Drug-resistant bacterial infections exhibit a major threat to public health. Thus, exploring a novel antibacterial with efficient inhibition is urgently needed. Herein, this paper describes three types of MSNs (MSNs-FC2-R1, MSNs-FC2-R0.75, MSNs-FC2-R0.5) with controllable pore size (4-6 nm) and particle size (30-90 nm) that were successfully prepared. The MSNs were loaded with tetracycline hydrochloride (TCH) for effective inhibition of (ATCC25922) and TCH-resistant (MQ776). Results showed that the loading capacity of TCH in three types of MSNs was as high as over 500 mg/g, and the cumulative release was less than 33% in 60 h. The inhibitory rate of MSNs-FC2-R0.5 loaded with TCH against and drug-resistant reached 99.9% and 92.9% at the concentration of MIC, respectively, compared with the other two types of MSNs or free TCH. Modified MSNs in our study showed a great application for long-term bacterial growth inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877189 | PMC |
http://dx.doi.org/10.3390/molecules27041218 | DOI Listing |
Transl Psychiatry
December 2024
Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Basal ganglia is proposed to mediate symptoms underlying bipolar disorder (BD). To understand the cell type-specific gene expression and network changes of BD basal ganglia, we performed single-nucleus RNA sequencing of 30,752 nuclei from caudate, putamen, globus pallidus, and substantia nigra of control human postmortem brain and 24,672 nuclei from BD brain. Differential expression analysis revealed major difference lying in caudate, with BD medium spiny neurons (MSNs) expressing significantly higher PDE5A, a cGMP-specific phosphodiesterase.
View Article and Find Full Text PDFJ Affect Disord
February 2025
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China. Electronic address:
Cell Rep
November 2024
Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, USA; Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, USA. Electronic address:
Intracellular chloride (Cl) homeostasis is a critical regulator of neuronal excitability. Voltage-dependent neuronal Cl channels remain the least understood in terms of their role as a source of Cl entry controlling excitability. We have shown recently that striatal medium spiny neurons (MSNs) express a functional Cl conducting ClC-1-like channel with properties similar but not identical to native ClC-1 channels (Yarotskyy, V.
View Article and Find Full Text PDFMorphology is a cardinal feature of a neuron that mediates its functions, but profiling neuronal morphologies at scale remains a formidable challenge. Here we describe a generalizable pipeline for large-scale brainwide study of dendritic morphology of genetically-defined single neurons in the mouse brain. We generated a dataset of 3,762 3D-reconstructed and reference-atlas mapped striatal D1- and D2- medium spiny neurons (MSNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!