The environmental conditions of caves shape microbiota. Within caves' microbial communities, actinomycetes are among the most abundant bacteria. Cave actinomycetes have gained increasing attention during the last decades due to novel bioactive compounds with antibacterial, antioxidant and anticancer activities. However, their potential role in soil environments is still unknown. This review summarises the literature dealing with actinomycetes from caves, underlining for the first time their potential roles in soil environments. We provide an overview of their diversity and biotechnological properties, underling their potential role in soil environments applications. The contribution of caves' actinomycetes in soil fertility and bioremediation and crops biostimulation and biocontrol are discussed. The survey on the literature show that several actinomycetes genera are present in cave ecosystems, mainly , , and . Among caves' actinomycetes, is the most studied genus due to its ubiquity, survival capabilities, and metabolic versatility. Despite actinomycetes' outstanding capabilities and versatility, we still have inadequate information regarding cave actinomycetes distribution, population dynamics, biogeochemical processes, and metabolisms. Research on cave actinomycetes needs to be encouraged, especially concerning environmental soil applications to improve soil fertility and health and to antagonise phytopathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875103PMC
http://dx.doi.org/10.3390/microorganisms10020453DOI Listing

Publication Analysis

Top Keywords

soil environments
16
cave actinomycetes
12
actinomycetes
9
actinomycetes caves
8
overview diversity
8
diversity biotechnological
8
biotechnological properties
8
potential role
8
role soil
8
caves' actinomycetes
8

Similar Publications

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution.

View Article and Find Full Text PDF

Unravelling the outcome of L-glutaminase produced by Streptomyces sp. strain 5 M as an anti-neoplasm activity.

Microb Cell Fact

January 2025

Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.

Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.

Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Soil is one of the most important reservoirs of antibiotic resistance, global threat that needs to be addressed with the One Health approach. Despite urban parks playing a fundamental role in urban ecosystems, the diffusion, maintenance, and human impact of antibiotic-resistance genes in this substrate are still poorly addressed. To fill in this gap, we adopted a molecular and culturomics approach to study antibiotic resistance in urban parks, accounting for the environmental matrix and the level of urbanization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!