AI Article Synopsis

  • The text discusses a genus of Amoebozoa that includes harmful species found in the intestines, focusing on gene regulation from an evolutionary viewpoint.
  • Research involved profiling transcriptomes of closely related species, identifying transcription start sites (TSS) and polyadenylation sites (PAS) to analyze gene regulatory sequences.
  • A key finding was the prevalence of antisense transcription within gene coding sequences, particularly in genes related to processes critical for species that infect the human intestine, hinting at a conserved gene regulatory system.

Article Abstract

is a genus of Amoebozoa that includes the intestine-colonizing pathogenic species . To understand the basis of gene regulation in from an evolutionary perspective, we have profiled the transcriptomes of its closely related species , and Genome-wide identification of transcription start sites (TSS) and polyadenylation sites (PAS) revealed the similarities and differences of their gene regulatory sequences. In particular, we found the widespread initiation of antisense transcription from within the gene coding sequences is a common feature among all species. Interestingly, we observed the enrichment of antisense transcription in genes involved in several processes that are common to species infecting the human intestine, e.g., the metabolism of phospholipids. These results suggest a potentially conserved and compact gene regulatory system in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874941PMC
http://dx.doi.org/10.3390/microorganisms10020396DOI Listing

Publication Analysis

Top Keywords

gene regulatory
8
antisense transcription
8
species
5
rna sequencing
4
sequencing reveals
4
reveals widespread
4
transcription
4
widespread transcription
4
transcription natural
4
natural antisense
4

Similar Publications

Crohn's disease (CD) is a complex inflammatory bowel disease resulting from an interplay of genetic, microbial, and environmental factors. Cell-type-specific contributions to CD etiology and genetic risk are incompletely understood. Here we built a comprehensive atlas of cell-type- resolved chromatin accessibility comprising 557,310 candidate cis-regulatory elements (cCREs) in terminal ileum and ascending colon from patients with active and inactive CD and healthy controls.

View Article and Find Full Text PDF

Only a third of immune-associated loci from genome-wide association studies (GWAS) colocalize with expression quantitative trait loci (eQTLs). To learn about causal genes and mechanisms at the remaining loci, we created a unified single-cell chromatin accessibility (scATAC-seq) map in peripheral blood comprising a total of 282,424 cells from 48 individuals. Clustering and topic modeling of scATAC data identified discrete cell-types and continuous cell states, which helped reveal disease-relevant cellular contexts, and allowed mapping of genetic effects on chromatin accessibility across these contexts.

View Article and Find Full Text PDF

, a R2R3-MYB transcription factor from purple tea (), positively regulates anthocyanin biosynthesis.

Front Plant Sci

December 2024

Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China.

In tea (), anthocyanins are important secondary metabolites that are linked to leaf color. Anthocyanin biosynthesis is a complex biological process, in which multiple genes including structural and regulatory genes are involved. Here, we describe the cloning and characterizing of a new R2R3-MYB transcription factor gene, , isolated from purple tea variety ''.

View Article and Find Full Text PDF

Genetic risk variants for common diseases are predominantly located in non-coding regulatory regions and modulate gene expression. Although bulk tissue studies have elucidated shared mechanisms of regulatory and disease-associated genetics, the cellular specificity of these mechanisms remains largely unexplored. This study presents a comprehensive single-nucleus multi-ancestry atlas of genetic regulation of gene expression in the human prefrontal cortex, comprising 5.

View Article and Find Full Text PDF

RNA-binding protein quaking: a multifunctional regulator in tumour progression.

Ann Med

December 2025

Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China.

Background: Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!