Intensive cultivation based on monocultures has a significant impact on ecosystem function, and sustainable agriculture must rely on alternative methods, including crop rotation. On the Canadian prairies, the use of pulse crops is a common practice, but few studies have investigated the impact on soil microorganisms. Here, we studied the effect of pea, wheat, pea-wheat rotation, and fallow in bulk soil bacterial and fungal communities. We characterized soil microbiota by high-throughput sequencing of 16S and 18S rRNA genes for bacteria and eukaryotes. Different crop rotations and fallow significantly modified soil community composition, as well as bacterial and fungal diversity. Pea alone caused a strong reduction of bacterial and fungal richness and diversity compared to wheat, pea-wheat rotation, and fallow. Notably, pea-wheat rotation increased the abundance of compared to other management practices. The bacterial community was less responsive to crop rotation identity compared to the fungal microbiota, and we found minor differences at the phylum level, with an increase in Actinobacteria in fallow and Firmicutes in wheat. In summary, our study demonstrated that rotations alter bulk soil microbial community diversity and composition in Canadian prairies. The frequent use of pea in rotation with wheat should be carefully evaluated, balancing their ecological effects on nitrogen mineralization, water conservation, and impact on beneficial, as well as pathotrophic, fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876268PMC
http://dx.doi.org/10.3390/microorganisms10020370DOI Listing

Publication Analysis

Top Keywords

pea-wheat rotation
16
bacterial fungal
12
soil microbiota
8
crop rotation
8
canadian prairies
8
wheat pea-wheat
8
rotation fallow
8
bulk soil
8
soil
6
rotation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!