Translational Fusion to Hmp Improves Heterologous Protein Expression.

Microorganisms

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

Published: February 2022

Flavohemoglobins, which are widely distributed in prokaryotes and eukaryotes, play key roles in oxygen (O) transport and nitric oxide (·NO) defense. Hmp is the flavohemoglobin of , and here we report that the translational fusion of Hmp to the N-terminus of heterologous proteins increases their expression in . The effect required the fusion of the proteins, and was independent of both the O-binding and catalytic activity of Hmp. Increased expression was at the translational level, likely to be downstream of initiation, and we observed that as little as the first 100 amino acids of Hmp were sufficient to boost protein production. These data demonstrate the potential of Hmp as an N-terminal fusion tag to increase protein yield, and suggest that the utility of bacterial hemoglobins to biotechnology goes beyond their O transport and ·NO detoxification capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879370PMC
http://dx.doi.org/10.3390/microorganisms10020358DOI Listing

Publication Analysis

Top Keywords

translational fusion
8
fusion hmp
8
hmp
6
hmp improves
4
improves heterologous
4
heterologous protein
4
protein expression
4
expression flavohemoglobins
4
flavohemoglobins distributed
4
distributed prokaryotes
4

Similar Publications

Aflibercept and brolucizumab, two anti-VEGF agents used as intravitreal injections in ophthalmology, differ significantly in molecular weight (aflibercept-115 kDa and brolucizumab-26 kDa). Using aqueous humor samples collected after drug administration, we measured and performed a comparative analysis of pharmacokinetics and half-lives of these drugs in the human eye. Since the quantification of monoclonal antibodies (mAbs) using antigen-antibody reactions, such as ELISA, is influenced by endogenous ligands or anti-drug antibodies, we employed nano-surface and molecular-orientation limited proteolysis (nSMOL), combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), for accurate measurements.

View Article and Find Full Text PDF

Mitochondrial base editing: from principle, optimization to application.

Cell Biosci

January 2025

Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.

In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.

Biofabrication

January 2025

DWI-Leibniz-Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen, 52074, GERMANY.

Bioprinting is currently the most promising method to biofabricate complex tissues in vitro with the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, like gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin.

View Article and Find Full Text PDF

Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!