is a food-grade, and generally recognized as safe, bacterium, which making it ideal for producing plasmid DNA (pDNA) or recombinant proteins for industrial or pharmaceutical applications. The present paper reviews the major findings from transcriptome and proteome studies, with an overexpression of native or recombinant proteins. These studies should provide important insights on how to engineer the plasmid vectors and/or the strains in order to achieve high pDNA or recombinant proteins yields, with high quality standards. harboring high copy numbers of plasmids for DNA vaccines production showed altered proteome profiles, when compared with a smaller copy number plasmid. For live mucosal vaccination applications, the cell-wall anchored antigens had shown more promising results, when compared with intracellular or secreted antigens. However, previous transcriptome and proteome studies demonstrated that engineering to express membrane proteins, mainly with a eukaryotic background, increases the overall cellular burden. Genome engineering strategies could be used to knockout or overexpress the pinpointed genes, so as to increase the profitability of the process. Studies about the effect of protein overexpression on and transcriptome and proteome are also included.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877491 | PMC |
http://dx.doi.org/10.3390/microorganisms10020267 | DOI Listing |
Aging Dis
December 2024
Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.
Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.
Background: Agora (https://agora.adknowledgeportal.org) is an openly available web resource developed to enable a broad spectrum of Alzheimer's disease (AD) researchers access to target-based evidence generated within the translational research portfolio of the National Institute on Aging (NIA).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!