Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, Cu nanostructures are obtained by solid-state dewetting of 9 nm copper layer (dry) or by ablating copper target, using a nanosecond pulsed laser at 1064 nm, in acetone and isopropyl alcohol (wet). The Cu nanostructures are embedded in aluminum-doped zinc oxide layer. Then, the electrical, optical, and morphological properties of the two kinds of systems, as a function of their synthesis parameters, are investigated. The aim is to compare the two fabrication methods and select the main conditions to achieve the best system for photovoltaic applications. The main differences, exhibited by the wet and dry processes, were in the shape and size of the Cu nanostructures. Dewetting in nitrogen produces faceted nanoparticles, with an average size below 150 nm, while laser ablation originates spherical and smaller nanoparticles, below 50 nm. Dry system underwent to thermal annealing, which improves the electrical properties, compared to the wet system, with a sheet resistance of 10 vs. 10 Ω/sq, respectively; finally, the dry system shows a maximum transmittance of 89.7% at 697 nm, compared to the wet system in acetone, 88.4% at 647 nm, as well as in isopropyl alcohol, 86.9% at 686 nm. Moreover, wet systems show higher transmittance in NUV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879525 | PMC |
http://dx.doi.org/10.3390/mi13020247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!