In this study, polyethylene glycol (PEG) and polyurethane (PU)-based shape-stabilized copolymer nanocomposites were synthesized and utilized for developing low-cost and flexible temperature sensors. PU was utilized as a flexible structural material for loading a thermosensitive phase change PEG polymer by means of physical mixing and chemical crosslinking. Furthermore, the introduction of multi-walled carbon nanotubes (MWCNT) as a conductive filler in the PEG-PU copolymer resulted in a nanocomposite with thermoresistive properties. MWCNT loading concentrations from 2 wt.% to 10 wt.% were investigated, to attain the optimum conductivity of the nanocomposite. Additionally, the effect of MWCNT loading concentration on the thermosensitive behavior of the nanocomposite was analyzed in the temperature range 25 °C to 50 °C. The thermosensitive properties of the physically mixed and crosslinked polymeric nanocomposites were compared by spin coating the respective nanocomposites on screen printed interdigitated (IDT) electrodes, to fabricate the temperature sensor. The chemically crosslinked MWCNT-PEG-PU polymeric nanocomposite showed an improved thermosensitive behavior in the range 25 °C to 50 °C, compared to the physically mixed nanocomposite. The detailed structural, morphological, thermal, and phase transition properties of the nanocomposites were investigated using XRD, FTIR, and DSC analysis. XRD and FTIR were used to analyze the crystallinity and PEG-PU bonding of the copolymer nanocomposite, respectively; while the dual phase (solid-liquid) transition of PEG was analyzed using DSC. The proposed nanocomposite-based flexible temperature sensor demonstrated excellent sensitivity, reliability and shows promise for a wide range of bio-robotic and healthcare applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875379 | PMC |
http://dx.doi.org/10.3390/mi13020197 | DOI Listing |
Prog Addit Manuf
July 2024
Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.
View Article and Find Full Text PDFRSC Adv
January 2025
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology Beijing 100029 P. R. China
[This corrects the article DOI: 10.1039/D4RA06915C.].
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Nanomagnetism may enable electrical conductivity and Seebeck coefficient to be decoupled and can potentially lead to remarkable enhancements in thermoelectric (TE) performance, however, their physical mechanisms have not been explored. Herein, it is shown that the nanomagnetism from Fe and FeO nanoparticles embedded in BiSbTe/epoxy flexible films can lead to the carriers splitting into spin-up and spin-down conductive branches with different resistances and mobilities due to the exchange interaction between the spin of carriers and the nanomagnetism. The double-resistance conduction of carriers may well explain the decoupling of electrical conductivity and Seebeck coefficient and their simultaneous enhancements in the thermo-electro-magnetic flexible films.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!