Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted -values less than 0.05. The novel lipid biomarker candidates identified provide insight into the metabolic pathways altered within 24 h of mild TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878543PMC
http://dx.doi.org/10.3390/metabo12020150DOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
lipid panels
8
injury
6
lipid
5
lipidome alterations
4
alterations mild
4
mild traumatic
4
injury rat
4
rat traumatic
4

Similar Publications

The burnout phenomenon is a subject of considerable interest due to its impact on both employee well-being and scientific inquiry. Workplace factors, both intrinsic and extrinsic, play a pivotal role in its development, often leading to job dissatisfaction and heightened burnout risk. Chronic stress and burnout induce significant dysregulation in the autonomic nervous system and hormonal pathways, alongside structural brain changes.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Article Synopsis
  • Traumatic brain injury (TBI) is a leading cause of death, complicating the development of effective therapies due to the unique nature of each injury.
  • Clinical questions regarding the benefits of measuring intracranial pressure, cerebral perfusion pressure, and surgical interventions remain largely unanswered.
  • This study focused on acute subdural hematoma in a porcine model to better understand secondary brain injury and the effects of different injury patterns on outcomes, highlighting the need for comprehensive models to improve TBI treatment translation.
View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!