A biomaterial was created for hard tissue implanted scaffolds as a translational therapeutic approach. The existing biomaterials containing titanium dioxide filler posed a risk of oxygen gas vacancy. This will block the canaliculars, leading to a limit on the nutrient fluid supply. To overcome this problem, low brass was used as an alternative filler to eliminate the gas vacancy. Low brass with composition percentages of 0%, 2%, 5%, 15%, and 30% was filled into the polyester urethane liquidusing the metallic filler polymer reinforced method. The structural characterizations of the low brass filler biomaterial were investigated by Field Emission Scanning Electron Microscopy. The results showed the surface membrane strength was higher than the side and cross-section. The composition shapes found were hexagon for polyester urethane and peanut for low brass. Low brass stabilised polyester urethane in biomaterials by the formation of two 5-ringed tetrahedral crystal structures. The average pore diameter was 308.9 nm, which is suitable for articular cartilage cells. The pore distribution was quite dispersed, and its curve had a linear relationship between area and diameter, suggestive of the sphere-shaped pores. The average porosities were different between using FESEM results of 6.04% and the calculated result of 3.28%. In conclusion, this biomaterial had a higher surface membrane strength and rather homogeneous dispersed pore structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875846 | PMC |
http://dx.doi.org/10.3390/ma15041421 | DOI Listing |
Sci Rep
January 2025
Center for Automation and Robotics, CSIC-Universidad Politécnica de Madrid, Arganda del Rey, Madrid, 28500, Spain.
Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.
View Article and Find Full Text PDFNat Commun
December 2024
Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
Micromachines (Basel)
October 2024
Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan.
Fe-Ni-Co-Al-based systems have attracted a lot of interest due to their large recoverable strain. In this study, the microstructure and thermal cycling behaviors of FeNiCoAlTiNb (at.%) 98.
View Article and Find Full Text PDFPhys Rev E
October 2024
University of Maryland, College Park, Maryland 20742, USA.
We conducted avalanching experiments with an external magnetic field and granular samples of different grain sizes (3.18 mm, 6.35 mm, and 8.
View Article and Find Full Text PDFJAMA Netw Open
November 2024
Innovation and Health Evaluation Hub, Centre de Recherche du CHUM, Montréal, Québec, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!