Can Mesoporous Silica Speed Up Degradation of Benzodiazepines? Hints from Quantum Mechanical Investigations.

Materials (Basel)

Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via Pietro Giuria, 7, 10125 Torino, Italy.

Published: February 2022

AI Article Synopsis

  • This study investigates the interactions between the benzodiazepine drug nitrazepam and different models of amorphous silica surfaces, important for drug delivery purposes.
  • The research aims to determine whether these silica-drug interactions may promote the degradation of the drug, potentially affecting its pharmaceutical efficacy.
  • The findings reveal that the adsorption of nitrazepam on amorphous silica is highly exothermic and involves partial proton transfer, suggesting silica could act as a catalyst in the degradation of benzodiazepines.

Article Abstract

This work reports for the first time a quantum mechanical study of the interactions of a model benzodiazepine drug, i.e., nitrazepam, with various models of amorphous silica surfaces, differing in structural and interface properties. The interest in these systems is related to the use of mesoporous silica as carrier in drug delivery. The adopted computational procedure has been chosen to investigate whether silica-drug interactions favor the drug degradation mechanism or not, hindering the beneficial pharmaceutical effect. Computed structural, energetics, and vibrational properties represent a relevant comparison for future experiments. Our simulations demonstrate that adsorption of nitrazepam on amorphous silica is a strongly exothermic process in which a partial proton transfer from the surface to the drug is observed, highlighting a possible catalytic role of silica in the degradation reaction of benzodiazepines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875265PMC
http://dx.doi.org/10.3390/ma15041357DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
quantum mechanical
8
amorphous silica
8
silica speed
4
speed degradation
4
degradation benzodiazepines?
4
benzodiazepines? hints
4
hints quantum
4
mechanical investigations
4
investigations work
4

Similar Publications

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Nanodevice-Mediated Immune Cell Recruitment: Targeting Senescent Cells via MMP-3-Responsive CXCL12-Coated Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain.

Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype.

View Article and Find Full Text PDF

Rapid identification of pathogenic bacteria from clinical positive blood cultures virus-like magnetic bead enrichment and MALDI-TOF MS profiling.

Analyst

January 2025

Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.

Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF

Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics.

Adv Colloid Interface Sci

January 2025

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:

In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!