Ducks are the natural reservoir of influenza A virus and the central host for the avian influenza virus (AIV) subtype H5N1, which is highly pathogenic. Semi-scavenging domestic ducks allow for the reemergence of new influenza subtypes which could be transmitted to humans. We collected 844 cloacal swabs from semi-scavenging ducks inhabiting seven migratory bird sanctuaries of Bangladesh for the molecular detection of avian influenza genes. We detected the matrix gene (M gene) using real-time RT-PCR (RT-qPCR). Subtyping of the AIV-positive samples was performed by RT-qPCR specific for H5, H7, and H9 genes. Out of 844 samples, 21 (2.488%) were positive for AIV. Subtyping of AIV positive samples ( = 21) revealed that nine samples (42.85%) were positive for the H9 subtype, five (23.80%) were positive for H5, and seven (33.33%) were negative for the three genes (H5, H7, and H9). We detected the same genes after propagating the virus in embryonated chicken eggs from positive samples. Semi-scavenging ducks could act as carriers of pathogenic AIV, including the less pathogenic H9 subtype. This can enhance the pathogenicity of the virus in ducks by reassortment. The large dataset presented in our study from seven areas should trigger further studies on AIV prevalence and ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879534 | PMC |
http://dx.doi.org/10.3390/life12020320 | DOI Listing |
Nat Commun
December 2024
Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Clade 2.3.4.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
Background: Highly pathogenic avian influenza (HPAI) (H5N1) has been endemic in Egypt for almost two decades, profoundly impacting both the poultry industry and public health. Egypt stands as a prominent epicenter for HPAI H5N1 outbreaks in Africa, marked by the highest number of positive human cases. Despite continuous governmental efforts, prior research underscored the inadequacy of strategies in controlling the virus spread.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
Highly pathogenic avian influenza (HPAI) is a viral disease caused by some H5 and H7 subtypes of influenza virus type A in most species of birds, especially poultry. HPAI viruses are among the most challenging viruses that threaten both human and animal health. Consequently, various strategies, such as the use of vaccines have been proposed to control the disease.
View Article and Find Full Text PDFVirol Sin
December 2024
Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea. Electronic address:
Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!