Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875522PMC
http://dx.doi.org/10.3390/life12020279DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence cardiovascular
4
cardiovascular genetics
4
genetics polygenic
4
polygenic diseases
4
diseases genetic
4
genetic disorders
4
disorders caused
4
caused combined
4
combined action
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!