Electrodialysis (ED) is a promising technology suitable for nutrient recovery from a wide variety of liquid waste streams. For optimal operating conditions, the limiting current density (LCD) has to be determined separately for each treated feed and ED equipment. LCD is most frequently assessed in the NaCl solutions. In this paper, five graphical methods available in literature were reviewed for LCD determination in a series of five feed solutions with different levels of complexity in ion and matrix composition. Wastewater from microbial fermentation was included among the feed solutions, containing charged and uncharged particles. The experiments, running in the batch ED with an online conductivity, temperature, and pH monitoring, were conducted to obtain data for the comparison of various LCD determination methods. The results revealed complements and divergences between the applied LCD methods with increasing feed concentrations and composition complexity. The Cowan and Brown method had the most consistent results for all of the feed solutions. Online conductivity monitoring was linearly correlated with the decreasing ion concentration in the feed solution and corresponding LCD. Therefore, the results obtained in this study can be applied as a base for the automatized dynamic control of the operating current density-voltage in the batch ED. Conductivity alone should not be used for the ED control since LCD depends on the ion exchange membranes, feed flow, temperature and concentration, ionic species, their concentration ratios, and uncharged particles of the feed solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875246 | PMC |
http://dx.doi.org/10.3390/membranes12020241 | DOI Listing |
Front Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Chosun University, Gwangju, 61452, South Korea.
The study presents an intelligent, model-free current control strategy that eliminates the need for explicit plant models while efficiently reducing the effect of plant parameter perturbation. By employing a data-driven approach with fewer input features, the proposed scheme reduces the computational burden during training while maintaining high control performance. Unlike conventional model predictive current control (MPCC), which is computationally expensive because of solving optimization problems at each sample time, and requires precise plant models, the proposed method enhances system performance by addressing plant model discrepancies through data-driven techniques.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, PR China.
Rapeseed meal (RSM), a protein-rich byproduct, holds potential as a high-quality animal feed, but nitrile compounds derived from glucosinolates (GSLs) in RSM pose a toxicity risk. Nitrilases, enzymes that hydrolyze toxic nitriles to carboxylic acids, offer a potential solution for detoxification. However, the low thermal stability of nitrilases restricts their industrial applicability.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
Drinking water has emerged as an important route for microplastics (MPs) to enter the human body, prompting concerns about their adverse health impacts. Membrane filtration technology is widely recognized as an effective treatment solution for combating MP pollution in water. However, recent research disputes that polymeric membrane systems may serve as additional sources of MPs in drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!