The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874440 | PMC |
http://dx.doi.org/10.3390/membranes12020150 | DOI Listing |
J Agric Food Chem
January 2025
Ankang Research and Development Center for Se-Enriched Products, Ankang 725000, China.
Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Italy. Electronic address:
The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman-Kozeny relationship between permeability K, hydraulic diameter d and hydrodynamic tortuosity τ holds true for all the geometries investigated with a unique shape coefficient K.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul Health and Technology University, Istanbul 34469, Turkey.
This study presents a combination of High Performance Liquid Chromatography (HPLC) and ultraviolet (UV) detection that provides the quantification of agnuside in human plasma specimens. Reverse-phase chromatographic separation was carried out with C18 column (150 mm × 4.6 mm × 5 μm), at 25°C with isocratic elution of the mobile phase containing methanol: 0.
View Article and Find Full Text PDFJ Mater Chem A Mater
January 2025
MESA+ Institute for Nanotechnology, University of Twente 7500 AE Enschede Netherlands
The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112-0114, United States.
Silicon (Si) is recognized as a promising anode material for lithium-ion batteries (LIBs). However, the significant volume expansion during lithiation poses a make-or-break challenge for the commercial adoption of silicon as an anode. The solutions to mitigate the challenge often depend on processes that can increase costs for the LIB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!