Respiratory sinus arrhythmia (RSA) is a phenomenon in which the heart rate (HR) changes with respiration, increasing during inspiration and decreasing during expiration. RSA biofeedback training has an effect in relieving negative mental conditions, such as anxiety and stress. Respiration is an important indicator affecting the parasympathetic activation within the body during RSA biofeedback training. Although there are existing studies that consider individual differences when selecting optimized respiration using heart rate variability, the studies that use the high frequency components of HRV, which is an indicator of parasympathetic activation, are insufficient. For this reason, this paper proposes a process to identify optimized respiration for efficient RSA feedback, consisting of three steps: (1) application, (2) optimization, and (3) validation. In the application phase, we measured PPG data against various respiratory cycles based on the HF components of HRV and calculated the proposed heart stabilization indicator (HSI) from the data. Then, we determined the optimized respiration cycle based on the HSI in the optimization step. Finally, we analyzed seven stress-related indices against the optimized respiration cycle. The experimental results show that HSI is associated with the parasympathetic nervous system activation, and the proposed method could help to determine the optimal respiratory cycle for each individual. Lastly, we expect that the proposed design could be used as an alternative to improving the efficiency of RSA biofeedback training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871855 | PMC |
http://dx.doi.org/10.3390/ijerph19042087 | DOI Listing |
Appl Psychophysiol Biofeedback
January 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.
Resonance frequency (RF) is characterized as the specific frequency at which a system, equipped with delayed self-correction or negative feedback mechanisms, exhibits maximal amplitude oscillations in response to an external stimulus of a particular frequency. Emerging evidence suggests that the cardiovascular system has an inherent RF, and that breathing at this frequency can markedly enhance health and cardiovascular function. However, the efficacy of resonance frequency breathing (RFB) and the specific responses of the cardiovascular, respiratory, and central nervous systems during RFB remain unclear.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
: A recent retrospective study conducted by our team identified a high percentage of postoperative pneumonia in children with neuromuscular scoliosis. Based on the findings in that study and our clinical experience, we aimed to assess the effectiveness of an optimized perioperative care protocol. : As part of a prospective study, a multidisciplinary team developed a protocol that included preoperative nutritional and respiratory optimization, intra- and postoperative intravenous glucose infusion, early extubation, and postoperative nutritional optimization.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Anaesthesiology & Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University Munich, 81675 Munich, Germany.
: Skeletal muscle mass depletion adversely affects critically ill patient outcomes. Standardized methods for assessing muscle mass in this population are limited, particularly regarding changes during ICU stays and their implications for risk stratification. : In this secondary analysis of our prospective data registry of surgical ICU patients, we used a single slice extracted from a computed tomography scan to determine the patient's direction of absolute change in skeletal muscle mass between two different time points (-14 d to +0 d and +5 d to +21 d) during his or her critical illness.
View Article and Find Full Text PDFLife (Basel)
December 2024
Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA.
(1) Background: Respiratory dysfunction is a debilitating consequence of cervical and thoracic spinal cord injury (SCI), resulting from the loss of cortico-spinal drive to respiratory motor networks. This impairment affects both central and peripheral nervous systems, disrupting motor control and muscle innervation, which is essential for effective breathing. These deficits significantly impact the health and quality of life of individuals with SCI.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, 41018 Seville, Spain.
Biological signals such as respiration (RSP) and heart rate (HR) are oscillatory and physiologically coupled, maintaining homeostasis through regulatory mechanisms. This report models the dynamic relationship between RSP and HR in 45 healthy volunteers at rest. Cross-correlation between RSP and HR was computed, along with regression analysis to predict HR from RSP and its first-order time derivative in continuous signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!