Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed.

Int J Environ Res Public Health

Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.

Published: February 2022

Duckweed () has the potential to treat anaerobically digested swine wastewater (ADSW), but the effects of antibiotics and heavy metals in ADSW on the treatment performance and mechanism of are not clear. Herein, an experiment was conducted to investigate the effects of sulfamethazine (SMZ) and cupric ion on NH4+-N and total phosphorus (TP) removal from synthetic ADSW. The activity of superoxide dismutase (SOD) and the contents of photosynthetic pigments, vitamin E, and proteins in duckweed were also evaluated. Under the stress of SMZ, duckweed showed excellent removal efficiency of nutrients, and the results of SOD activity and photosynthetic pigments content indicated that duckweed had good tolerance to SMZ. Interestingly, a combined application of SMZ and cupric ion would inhibit the nutrient removal by duckweed, but significantly increased the contents of photosynthetic pigments, proteins, and vitamin E. In addition, the consequence indicated that high value-added protein and vitamin E products could be produced and harvested by cultivating duckweed in ADSW. Furthermore, possible degradation pathways of SMZ in the duckweed system were proposed based on the analysis with LC-MS/MS. This research proposed a novel view for using duckweed system to remove nutrients from ADSW and produce value-added products under the stress of SMZ and cupric ion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872130PMC
http://dx.doi.org/10.3390/ijerph19041949DOI Listing

Publication Analysis

Top Keywords

cupric ion
16
smz cupric
12
photosynthetic pigments
12
duckweed
9
effects sulfamethazine
8
anaerobically digested
8
digested swine
8
swine wastewater
8
contents photosynthetic
8
stress smz
8

Similar Publications

Molecular characterization, transcriptional profiling, and antioxidant activity assessment of nucleoredoxin (NXN) as a novel member of thioredoxin from red-lip mullet (Planiliza haematocheilus).

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Nucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.

View Article and Find Full Text PDF

Enhanced oxidation of 2,4-dichlorophenol in ferrate(VI) and copper oxide system via the formation of trivalent copper ion and singlet oxygen.

Chemosphere

December 2024

Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China. Electronic address:

Improving the activity of ferrate is one of the main research focus in environmental field. Here, we demonstrate a novel copper oxide (CuO)-Ferrate(VI) system wherein CuO plays a key role in activating Fe(VI) to effectively eliminate phenolic contaminants. The dominant reactive species were determined to be Cu(III) and O, confirmed by in situ Raman spectroscopy, quenching experiments, and EPR tests.

View Article and Find Full Text PDF

Real-Time and Ultrasensitive Prostate-Specific Antigen Sensing Using Love-Mode Surface Acoustic Wave Immunosensor Based on MoS@CuO-Au Nanocomposites.

Sensors (Basel)

November 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS@CuO-Au nanocomposite conjugation. The MoS@CuO-Au nanocomposites were analyzed by SEM, XRD, and EDS.

View Article and Find Full Text PDF

The emergence of harmful microorganisms poses a public health challenge. Antimicrobial cotton textiles with semiconductor oxides offer a promising solution to mitigate pathogen spread. Here, we study the physicochemical interactions between copper oxides (CuO) and cellulose in cotton fiber functionalized with these same oxides for antimicrobial properties.

View Article and Find Full Text PDF

Exploring the immunological functions of thioredoxin domain-containing protein 17 (TXNDC17) in chub mackerel (Scomber japonicus): Immune response and cellular redox homeostasis.

Dev Comp Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

All organisms have evolved sophisticated antioxidant networks and enzymes to counteract reactive radicals, among which thioredoxin (Trx) systems are especially noteworthy. Thioredoxin domain-containing protein 17 (TXNDC17) is a ubiquitously expressed enzyme with oxidoreductase activity belonging to the Trx protein family. This study successfully uncovered and analyzed the TXNDC17 gene in Scomber japonicus (SjTXNDC17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!