A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungal Endophytes: A Potential Source of Antibacterial Compounds. | LitMetric

AI Article Synopsis

  • - Antibiotic resistance is a significant growing concern, worsened by the overuse of antibiotics and the COVID-19 pandemic, leading to an increase in harmful bacterial strains.
  • - Endophytic fungi have been shown to produce various bioactive metabolites that could help combat antimicrobial resistance, including compounds like anthraquinone and phenols.
  • - The review highlights 451 bioactive metabolites from endophytic fungi identified between 2015 and 2021, detailing their antibacterial properties, chemical structures, and potential methods for enhancing their production.

Article Abstract

Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877021PMC
http://dx.doi.org/10.3390/jof8020164DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
antimicrobial resistance
8
bioactive compounds
8
bioactive metabolites
8
fungal endophytes
4
endophytes potential
4
potential source
4
source antibacterial
4
antibacterial compounds
4
compounds antibiotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!