: Our objective was to develop a radiomics model based on magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CE-CT) to predict pathological complete response (pCR) to neoadjuvant treatment in locally advanced rectal cancer (LARC). All patients treated for a LARC with neoadjuvant CRT and subsequent surgery in two separate institutions between 2012 and 2019 were considered. Both pre-CRT pelvic MRI and CE-CT were mandatory for inclusion. The tumor was manually segmented on the T2-weighted and diffusion axial MRI sequences and on CE-CT. In total, 88 radiomic parameters were extracted from each sequence using the Miras© software, with a total of 822 features by patient. The cohort was split into training (Institution 1) and testing (Institution 2) sets. The ComBat and Synthetic Minority Over-sampling Technique (SMOTE) approaches were used to account for inter-institution heterogeneity and imbalanced data, respectively. We selected the most predictive characteristics using Spearman's rank correlation and the Area Under the ROC Curve (AUC). Five pCR prediction models (clinical, radiomics before and after ComBat, and combined before and after ComBat) were then developed on the training set with a neural network approach and a bootstrap internal validation ( = 1000 replications). A cut-off maximizing the model's performance was defined on the training set. Each model was then evaluated on the testing set using sensitivity, specificity, balanced accuracy (Bacc) with the predefined cut-off. Out of the 124 included patients, 14 had pCR (11.3%). After ComBat harmonization, the radiomic and the combined models obtained a Bacc of 68.2% and 85.5%, respectively, while the clinical model and the pre-ComBat combined achieved respective Baccs of 60.0% and 75.5%. After correction of inter-site variability and imbalanced data, addition of radiomic features enhances the prediction of pCR after neoadjuvant CRT in LARC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870201 | PMC |
http://dx.doi.org/10.3390/cancers14041079 | DOI Listing |
Front Oncol
December 2024
Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).
Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.
Front Physiol
December 2024
Department of Radiology, Yiyang Central Hospital, Yiyang, China.
Objectives: To evaluate the effectiveness of an MRI radiomics stacking ensemble learning model, which combines T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) with deep learning-based automatic segmentation, for preoperative prediction of the prognosis of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids.
Methods: This retrospective study collected data from 360 patients with uterine fibroids who underwent HIFU treatment. The dataset was sourced from Center A (training set: N = 240; internal test set: N = 60) and Center B (external test set: N = 60).
Digit Health
January 2025
School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
Background: The increasing body of evidence has been stimulating the application of artificial intelligence (AI) in precision medicine research for lung cancer. This trend necessitates a comprehensive overview of the growing number of publications to facilitate researchers' understanding of this field.
Method: The bibliometric data for the current analysis was extracted from the Web of Science Core Collection database, CiteSpace, VOSviewer ,and an online website were applied to the analysis.
Hum Brain Mapp
January 2025
Amsterdam UMC, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, the Netherlands.
Accurately predicting individual antidepressant treatment response could expedite the lengthy trial-and-error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning-based methods that predict individual-level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA-MDD consortium (n = 262 MDD patients; age = 36.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (J-W.F., H.L.); Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,School of Medicine, Zhejiang University, Hangzhou, China (H.L.); College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China (H.L.). Electronic address:
Rationale And Objectives: Papillary thyroid carcinoma (PTC) often metastasizes to lateral cervical lymph nodes, especially in level II. This study aims to develop predictive models to identify level II lymph node metastasis (LNM), guiding selective neck dissection (SND) to minimize unnecessary surgery and morbidity in low-risk patients.
Methods: A retrospective cohort of 313 PTC patients who underwent modified radical neck dissection (MRND) between October 2020 and January 2023 was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!