Background: Acquired resistance to sorafenib in hepatocellular carcinoma (HCC) patients results in poor prognosis. Epithelial-to-mesenchymal transition (EMT) is the major mechanism implicated in the resistance to sorafenib. We have reported the tumor suppressor role of SLAMF3 (signaling lymphocytic activation molecules family 3) in HCC progression and highlighted its implication in controlling the MRP-1 transporter activity. These data suggest the implication of SLAMF3 in sorafenib resistance mechanisms.

Methods: We evaluated the resistance to sorafenib in Huh-7 cells treated with progressive doses (Res cells). We investigated the link between acquired resistance to sorafenib and SLAMF3 expression by flow cytometry and Western blot methods. Furthermore, we analyzed the EMT and the stem cell potential of cells resistant to sorafenib.

Results: Sorafenib resistance was confirmed in Res cells by analyzing the cell viability in the presence of sorafenib. The mesenchymal transition, in Res cells, was confirmed by high migratory index and the expression of EMT antigens. Interestingly, we found that loss of SLAMF3 expression corresponded to sorafenib-resistant phenotypes. The overexpression of SLAMF3 reversed EMT, decreased metastatic potential and inhibited mTOR/ERK1/2 in Res cells.

Conclusions: We propose that rescuing SLAMF3 expression in resistant cells could represent a potential therapeutic strategy to enhance sorafenib efficacy in HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869973PMC
http://dx.doi.org/10.3390/cancers14040910DOI Listing

Publication Analysis

Top Keywords

slamf3 expression
16
resistance sorafenib
16
res cells
12
sorafenib
9
rescuing slamf3
8
hepatocellular carcinoma
8
acquired resistance
8
hcc patients
8
sorafenib resistance
8
cells
7

Similar Publications

SLAM-family receptors promote resolution of ILC2-mediated inflammation.

Nat Commun

June 2024

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.

Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice.

View Article and Find Full Text PDF

A review: Mechanisms and molecular pathways of signaling lymphocytic activation molecule family 3 (SLAMF3) in immune modulation and therapeutic prospects.

Int Immunopharmacol

May 2024

Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130021, China. Electronic address:

The signaling lymphocytic activation molecule (SLAM) family participates in the modulation of various innate and adaptive immune responses. SLAM family (SLAMF) receptors include nine transmembrane glycoproteins, of which SLAMF3 (also known as CD229 or Ly9) has important roles in the modulation of immune responses, from the fundamental activation and suppression of immune cells to the regulation of intricate immune networks. SLAMF3 is mainly expressed in immune cells, such as T, B, and natural killer cells.

View Article and Find Full Text PDF

Introduction: T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis.

View Article and Find Full Text PDF

SLAMF3 promotes Th17 differentiation and is reversed by iguratimod through JAK1/STAT3 pathway in primary Sjögren's syndrome.

Int Immunopharmacol

January 2024

Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China. Electronic address:

Objective: The signaling lymphocytic activation molecule family of receptors (SLAMF) is involved in the activation of T cells and plays important roles in the pathogenesis of autoimmune diseases. The purpose of this study is to observe the expression of SLAMF3 on CD4 + T cells and its effect on the differentiation of T helper 17 (Th17) in primary Sjögren's syndrome (pSS). Furthermore, we found iguratimod (IGU) could effectively reverse the aberrant Th17 differentiation through JAK1/STAT3 signaling.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology, linked to alterations in both the innate and the adaptive immune system. Due to the heterogeneity of the clinical presentation, the diagnosis of SLE remains complicated and is often made years after the first symptoms manifest, delaying treatment, and worsening the prognosis. Several studies have shown that signaling lymphocytic activation molecule family (SLAMF) receptors are aberrantly expressed and dysfunctional in SLE immune cells, contributing to the altered cellular function observed in these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!