A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Sensor Vibration Signal Based Three-Stage Fault Prediction for Rotating Mechanical Equipment. | LitMetric

In order to reduce maintenance costs and avoid safety accidents, it is of great significance to carry out fault prediction to reasonably arrange maintenance plans for rotating mechanical equipment. At present, the relevant research mainly focuses on fault diagnosis and remaining useful life (RUL) predictions, which cannot provide information on the specific health condition and fault types of rotating mechanical equipment in advance. In this paper, a novel three-stage fault prediction method is presented to realize the identification of the degradation period and the type of failure simultaneously. Firstly, based on the vibration signals from multiple sensors, a convolutional neural network (CNN) and long short-term memory (LSTM) network are combined to extract the spatiotemporal features of the degradation period and fault type by means of the cross-entropy loss function. Then, to predict the degradation trend and the type of failure, the attention-bidirectional (Bi)-LSTM network is used as the regression model to predict the future trend of features. Furthermore, the predicted features are given to the support vector classification (SVC) model to identify the specific degradation period and fault type, which can eventually realize a comprehensive fault prediction. Finally, the NSF I/UCR Center for Intelligent Maintenance Systems (IMS) dataset is used to verify the feasibility and efficiency of the proposed fault prediction method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870894PMC
http://dx.doi.org/10.3390/e24020164DOI Listing

Publication Analysis

Top Keywords

fault prediction
20
rotating mechanical
12
mechanical equipment
12
degradation period
12
fault
9
three-stage fault
8
prediction method
8
type failure
8
period fault
8
fault type
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!