Mechanisms of DNA Mobilization and Sequestration.

Genes (Basel)

Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.

Published: February 2022

The entire genome becomes mobilized following DNA damage. Understanding the mechanisms that act at the genome level requires that we embrace experimental and computational strategies to capture the behavior of the long-chain DNA polymer, which is the building block for the chromosome. Long-chain polymers exhibit constrained, sub-diffusive motion in the nucleus. Cross-linking proteins, including cohesin and condensin, have a disproportionate effect on genome organization in their ability to stabilize transient interactions. Cross-linking proteins can segregate the genome into sub-domains through polymer-polymer phase separation (PPPS) and can drive the formation of gene clusters through small changes in their binding kinetics. Principles from polymer physics provide a means to unravel the mysteries hidden in the chains of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872102PMC
http://dx.doi.org/10.3390/genes13020352DOI Listing

Publication Analysis

Top Keywords

cross-linking proteins
8
mechanisms dna
4
dna mobilization
4
mobilization sequestration
4
sequestration entire
4
genome
4
entire genome
4
genome mobilized
4
mobilized dna
4
dna damage
4

Similar Publications

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Antarctic Krill Protein Amyloid Fibrils as a Novel Iron Carrier for the Improvement of Iron Deficiency.

J Agric Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Iron fortification with food supplements remains the primary dietary strategy for improving iron deficiency anemia (IDA). This study used Antarctic krill protein for fibrillar design to form an Antarctic krill protein amyloid fibril (AKAF). The results indicated that peptides generated by proteolysis were a prerequisite for fibril assembly, forming elongated fibril structures and cross-linking upon heating.

View Article and Find Full Text PDF

A soybean protein isolate (SPI)-based hydrogel with controllable properties was prepared under mild conditions using a simple mixing method with dialdehyde sodium alginate (DSA) as an eco-friendly macromolecular crosslinker. DSA was successfully synthesized via periodate oxidation. Analysis of the structure of the SPI/DSA hydrogel indicated that a 3D network was formed between SPI and DSA through dynamic imine and hydrogen bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!