Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961612PMC
http://dx.doi.org/10.3390/biom12020278DOI Listing

Publication Analysis

Top Keywords

microvascular dysfunction
12
systemic microvascular
8
heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
cardiac systemic
8
hfpef
7
systemic
6
role systemic
4

Similar Publications

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

The Evolving Features of Takotsubo Syndrome.

Curr Cardiol Rep

January 2025

Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, USA.

Purpose Of The Review: Takotsubo syndrome (TTS) is a transient form of left ventricular dysfunction, typically affecting post-menopausal females, often preceded by emotional or physical stressful events that act as triggers. Initially believed to be a rare and benign condition for its reversible nature, TTS has recently emerged as a complex multifaceted clinical entity, with heterogenous clinical presentations and a non-negligible risk of serious in-hospital complications, including acute heart failure, arrhythmias and death.

Recent Findings: Emerging pathophysiological hypotheses, ranging from microvascular dysfunction to systemic inflammation, offer new insights into the underlying mechanisms of TTS.

View Article and Find Full Text PDF

Introduction: Endothelial damage is associated with acute and long-term coronavirus disease 2019 (COVID-19) complications. Proximal nailfold capillaries and nail beds give important clues to microvascular changes associated with endothelial dysfunction.

Objective: We aimed to use dermoscopy to examine the proximal nailfold capillaries and nail bed of COVID-19 patients and identify microvascular changes.

View Article and Find Full Text PDF

The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures.

View Article and Find Full Text PDF

Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.

Front Pharmacol

January 2025

Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.

Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!