Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869672PMC
http://dx.doi.org/10.3390/biom12020185DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
p450 2e1
8
human liver
8
liver microsomes
8
chemical crosslinking
8
crosslinking mass
8
mass spectrometry
8
protein-protein interactions
8
cxms strategy
8
exploring interactome
4

Similar Publications

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research.

Dig Dis Sci

January 2025

Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China.

Background And Aims: Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD.

Methods: Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database.

View Article and Find Full Text PDF

Biosynthesis of lactacystin as a proteasome inhibitor.

Commun Chem

January 2025

Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Lactacystin is an irreversible proteasome inhibitor isolated from Streptomyces lactacystinicus. Despite its importance for its biological activity, the biosynthesis of lactacystin remains unknown. In this study, we identified the lactacystin biosynthetic gene cluster by gene disruption and heterologous expression experiments.

View Article and Find Full Text PDF

Tacrolimus is metabolized in the liver with the participation of cytochrome P450 isoforms 3A4 and 3A5 (CYP3A4, CYP3A5). Omeprazole, unlike famotidine, is a substrate and inhibitor of CYP2C19, CYP3A4, CYP3A5 enzymes. The aim of the study is to compare the effect of omeprazole and famotidine on the tacrolimus concentration and the kidney transplant function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!