The improved treatment of knee injuries critically relies on having an accurate and cost-effective detection. In recent years, deep-learning-based approaches have monopolized knee injury detection in MRI studies. The aim of this paper is to present the findings of a systematic literature review of knee (anterior cruciate ligament, meniscus, and cartilage) injury detection papers using deep learning. The systematic review was carried out following the PRISMA guidelines on several databases, including PubMed, Cochrane Library, EMBASE, and Google Scholar. Appropriate metrics were chosen to interpret the results. The prediction accuracy of the deep-learning models for the identification of knee injuries ranged from 72.5-100%. Deep learning has the potential to act at par with human-level performance in decision-making tasks related to the MRI-based diagnosis of knee injuries. The limitations of the present deep-learning approaches include data imbalance, model generalizability across different centers, verification bias, lack of related classification studies with more than two classes, and ground-truth subjectivity. There are several possible avenues of further exploration of deep learning for improving MRI-based knee injury diagnosis. Explainability and lightweightness of the deployed deep-learning systems are expected to become crucial enablers for their widespread use in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871256PMC
http://dx.doi.org/10.3390/diagnostics12020537DOI Listing

Publication Analysis

Top Keywords

deep learning
16
knee injury
12
injury detection
12
knee injuries
12
mri studies
8
systematic review
8
knee
7
detection
4
deep
4
detection deep
4

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!