Late-onset Rasmussen encephalitis (LoRE) is a rare unihemispheric progressive inflammatory disorder causing neurological deficits and epilepsy. The long-term radiological evolution has never been fully described. We retrospectively analyzed the MR images of 13 LoRE patients from a total of 136 studies, and searched for focal areas of volume loss or signal intensity abnormality in grey matter or white matter. Each subject had a median of nine MRI studies (IQR 7-13). Frontal and temporal lobes were the most affected regions (13/13 and 8/13, respectively) and showed the greatest worsening over time in terms of atrophic changes (9/13 and 5/8, respectively). A milder cortical atrophy was found in the insular and parietal lobes. The caudate nucleus was affected in seven patients. Hyperintensities of grey matter and white matter on T2-WI and FLAIR images were observed in all patients, and transiently in eight patients. In two cases out of the latter patients, these transient alterations evolved into atrophy of the same region. Disease duration was significantly associated with signal abnormalities in the grey matter at last follow-up. LoRE MRI alterations are milder, and their progression is markedly slower compared to radiological findings described in the childhood form.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871246 | PMC |
http://dx.doi.org/10.3390/diagnostics12020502 | DOI Listing |
Aim: The aim of this study is to assess associated cerebral supratentorial anomalies in patients who underwent myelomeningocele repair in hopes of developing a better morphological apprehension of the forebrain's anomalies in this category of patients.
Material And Methods: This retrospective observational study assessed 426 pediatric patients who underwent myelomeningocele repair between January 2013 and December 2020. Cranial MRIs with T1- and T2-weighted sequences were obtained as part of the postoperative assessment to determine the presence of associated supratentorial anomalies in pediatric patients following myelomeningocele repair.
Front Genet
January 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States.
Introduction: Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance.
Methods: To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA).
Front Neurosci
January 2025
Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
Purpose: Tinnitus is considered a neurological disorder affecting both auditory and nonauditory networks. This study aimed to investigate the structural brain covariance network in tinnitus patients and analyze its altered topological properties.
Materials: Fifty three primary tinnitus patients and 67 age- and sex-matched healthy controls (HCs) were included.
Front Neurol
January 2025
School of Public Health, Shanxi Medical University, Taiyuan, China.
Background: Cognitive impairment (CI) is a condition in which an individual experiences noticeable impairment in thinking abilities. Long-term exposure to aluminum (Al) can cause CI. This study aimed to determine the relationship between CI and MRI-related changes in postroom workers exposed to Al.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!