We aimed to develop a new artificial intelligence (AI)-based method for evaluating endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) specimens in pancreatic diseases using deep learning and contrastive learning. We analysed a total of 173 specimens from 96 patients who underwent EUS-FNB with a 22 G Franseen needle for pancreatic diseases. In the initial study, the deep learning method based on stereomicroscopic images of 98 EUS-FNB specimens from 63 patients showed an accuracy of 71.8% for predicting the histological diagnosis, which was lower than that of macroscopic on-site evaluation (MOSE) performed by EUS experts (81.6%). Then, we used image analysis software to mark the core tissues in the photomicrographs of EUS-FNB specimens after haematoxylin and eosin staining and verified whether the diagnostic performance could be improved by applying contrastive learning for the features of the stereomicroscopic images and stained images. The sensitivity, specificity, and accuracy of MOSE were 88.97%, 53.5%, and 83.24%, respectively, while those of the AI-based diagnostic method using contrastive learning were 90.34%, 53.5%, and 84.39%, respectively. The AI-based evaluation method using contrastive learning was comparable to MOSE performed by EUS experts and can be a novel objective evaluation method for EUS-FNB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871496PMC
http://dx.doi.org/10.3390/diagnostics12020434DOI Listing

Publication Analysis

Top Keywords

contrastive learning
16
evaluation method
12
pancreatic diseases
12
eus-fnb specimens
12
endoscopic ultrasound-guided
8
ultrasound-guided fine-needle
8
fine-needle biopsy
8
artificial intelligence
8
deep learning
8
specimens patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!