A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Cobb Angle Measurement for Adolescent Idiopathic Scoliosis Using Convolutional Neural Network. | LitMetric

Automated Cobb Angle Measurement for Adolescent Idiopathic Scoliosis Using Convolutional Neural Network.

Diagnostics (Basel)

Department of Neurosurgery, Brunei Neuroscience, Stroke and Rehabilitation Centre, Pantai Jerudong Specialist Centre, Jerudong BG3122, Brunei.

Published: February 2022

The Cobb angle measurement of the scoliotic spine is prone to inter- and intra-observer variations in the clinical setting. This paper proposes a deep learning architecture for detecting spine vertebrae from X-ray images to evaluate the Cobb angle automatically. The public AASCE MICCAI 2019 anterior-posterior X-ray image dataset and local images were used to train and test the proposed convolutional neural network architecture. Sixty-eight landmark features of the spine were detected from the input image to obtain seventeen vertebrae on the spine. The vertebrae locations obtained were processed to automatically measure the Cobb angle. The proposed method can measure the Cobb angle with accuracies up to 93.6% and has excellent reliability compared to clinicians' measurement (intraclass correlation coefficient > 0.95). The proposed deep learning architecture may be used as a tool to augment Cobb angle measurement in X-ray images of patients with adolescent idiopathic scoliosis in a real-world clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871012PMC
http://dx.doi.org/10.3390/diagnostics12020396DOI Listing

Publication Analysis

Top Keywords

cobb angle
24
angle measurement
12
adolescent idiopathic
8
idiopathic scoliosis
8
convolutional neural
8
neural network
8
clinical setting
8
deep learning
8
learning architecture
8
spine vertebrae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!