Mitochondrial Ca-independent phospholipase Aγ (iPLAγ/PNPLA8) was previously shown to be directly activated by HO and release free fatty acids (FAs) for FA-dependent H transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLAγ in the brain is not completely understood. Here, using wild-type and iPLAγ-KO mice, we demonstrate the ability of -butylhydroperoxide (TBHP) to activate iPLAγ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLAγ, reflecting cleavage of glycerophospholipids from both -1 and -2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLAγ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial HO release. We also show that iPLAγ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLAγ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLAγ-KO mice. Collectively, our results support a key role of iPLAγ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868467 | PMC |
http://dx.doi.org/10.3390/antiox11020198 | DOI Listing |
JAMA Netw Open
January 2025
Department of Emergency Medicine, University of Massachusetts Chan Medical School-Baystate, Springfield.
Importance: Despite guideline recommendations to use low-molecular-weight heparins (LMWHs) or direct oral anticoagulants in the treatment of most patients with acute pulmonary embolism (PE), US-based studies have found increasing use of unfractionated heparin (UFH) in hospitalized patients.
Objective: To identify barriers and facilitators of guideline-concordant anticoagulation in patients hospitalized with acute PE.
Design, Setting, And Participants: This qualitative study conducted semistructured interviews from February 1 to June 3, 2024, that were recorded, transcribed, and analyzed in an iterative process using reflexive thematic analysis.
Neurol Sci
January 2025
Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy.
Introduction: Large artery atherosclerosis is a relevant cause of ischemic stroke. Beyond carotid artery stenosis ≥ 50%, causative in etiological classification of stroke, non-stenosing plaques are an increasingly reported cause of stroke with embolic pattern.
Methods: We are presenting the case of a 56 years old woman presenting with a first symptomatic multifocal ischemic stroke in the right internal carotid artery (ICA) territory on 2018 and a finding of asymptomatic past vascular injury in the same vascular territory on neuroimaging studies.
Alzheimers Dement
December 2024
Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
Background: The growing number of AD patients is a public concern all over the world. During the decade, anti-amyloid beta-proteins (Aβ) monoclonal antibodies for AD patients have been developed. Among the immunotherapeutic agents, lecanemab is an anti-Aβ monoclonal antibody that binds to Aβ protofibrils (Aβ PFs), which is an intermediate molecule in Aβ species.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Heterogeneity in the progression of clinical dementia poses a significant challenge, impeding the effectiveness of current therapies for Alzheimer's disease (AD). To decipher the molecular mechanisms governing heterogeneity in AD progression that remains a critical knowledge gap precluding rational therapeutic design, we investigated the biochemical and biophysical properties of tau present in the inferior temporal gyrus (ITG) and prefrontal cortex (PFC) brain regions of AD patients who had varying disease progression rates. To explore gene expression changes in the ITG which are associated with tau pathology and cognitive decline, we used RNA sequencing for molecular characterization of patients displaying tau and clinical heterogeneity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: We previously discovered that Aβ accumulates in the cortical/supranuclear region of the lens in people with Alzheimer's Disease (AD) (Goldstein et al., 2003) and Down Syndrome (DS; (Moncaster et al., 2010).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!