Fourier transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently used in proof-of-concept cohort studies for COVID-19 saliva screening. However, the biological basis of the proposed technology has not been established. To investigate underlying pathophysiology, we conducted controlled infection experiments on Vero E6 cells in vitro and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or 75% (/) Trizol for attenuated total reflectance (ATR)-FTIR spectroscopy and proteomics, or RT-PCR, respectively. Controlled infection with UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite a lack of viral replication, determined by RT-PCR or a cell culture infectious dose 50% assay. Nevertheless, SARS-CoV-2 infection induced additional FTIR signals over UV-inactivated SARS-CoV-2 infection in both cell and mouse models, which correspond to aggregated proteins and RNA. Proteomics of mouse oral lavage revealed increased secretion of kallikreins and immune modulatory proteins. Next, we collected saliva from a cohort of human participants ( = 104) and developed a predictive model for COVID-19 using partial least squares discriminant analysis. While high sensitivity of 93.48% was achieved through leave-one-out cross-validation, COVID-19 patients testing negative on follow-up on the day of saliva sampling using RT-PCR was poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to the misclassification of COVID-19 negatives. Finally, meta-analysis revealed that SARS-CoV-2 induced increases in the amide II band in all arms of this study and in recently published cohort studies, indicative of altered β-sheet structures in secreted proteins. In conclusion, this study reveals a consistent secretory pathophysiological response to SARS-CoV-2, as well as a simple, robust method for COVID-19 saliva screening using ATR-FTIR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962262PMC
http://dx.doi.org/10.3390/biomedicines10020351DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 infection
12
saliva screening
12
pathophysiological response
8
response sars-cov-2
8
cohort studies
8
covid-19 saliva
8
controlled infection
8
mouse oral
8
oral lavage
8
uv-inactivated sars-cov-2
8

Similar Publications

A Collaborative Online International Learning Experience for Doctoral Nursing Students and Faculty From Three Countries: Reshaping the Educational Landscape.

Nurs Educ Perspect

October 2024

About the Authors Judith Bacchus Cornelius, PhD, RN, FAAN, ANEF, is a professor, College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, North Carolina. Charlene Downing, PhD, RN, is a professor, Department of Nursing, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa. Adesola A. Ogunfowokan, PhD, RN, FWACN, is a professor, Community Health Nursing, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria. Nompumelelo Ntshingila, DCur(UJ), is an associate professor, Department of Nursing, Faculty of Health Sciences, University of Johannesburg. Florence Okoro, PhD, RN, is an associate professor, College of Health and Human Services, University of North Carolina at Charlotte. Ijeoma Enweana, DNP, RN, CVN, is adjunct nursing faculty, Presbyterian School of Nursing, Queens University of Charlotte, Charlotte, North Carolina. Oluwayemisi Olagunju, PhD, is senior lecturer, Department of Nursing Science, Obafemi Awolowo University. Funding was received from the University of North Carolina at Charlotte Global Learning and Internationalization Institute. For more information, contact Dr. Cornelius at

The COVID-19 pandemic presented opportunities for educational innovations and the development of intercultural learning experiences. A global health assignment guided by a collaborative online international learning pedagogy was assigned to doctoral nursing students from three different countries. Icebreaker activities, along with the Culturally You diagram, commenced the team-building process.

View Article and Find Full Text PDF

COVID-19 is a trigger of autoimmune rheumatic diseases: a hypothesis tested over time.

Rheumatol Int

December 2024

Department of General Practice N2, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

We discuss the paper recently published in Rheumatology Internationa. This article reflects on the prevalence of autoimmune rheumatic diseases (ARD) during the COVID-19 pandemic (2020-2023) and compares the same with the pre-pandemic period (2016-2019). We assume that SARS-CoV-2 triggers ARD.

View Article and Find Full Text PDF

Predictors of high-flow nasal cannula (HFNC) failure in severe community-acquired pneumonia or COVID-19.

Intern Emerg Med

December 2024

Department of Respiratory Medicine and Allergology, University Hospital, Goethe University, Frankfurt, Germany.

The aim was to identify predictors for early identification of HFNC failure risk in patients with severe community-acquired (CAP) pneumonia or COVID-19. Data from adult critically ill patients admitted with CAP or COVID-19 and the need for ventilatory support were retrospectively analysed. HFNC failure was defined as the need for invasive ventilation or death before intubation.

View Article and Find Full Text PDF

This study investigated the incidence of new-onset cardiovascular disorders up to 3.5 years post SARS-CoV-2 infection for 56,400 individuals with COVID-19 and 1,093,904 contemporary controls without COVID-19 in the Montefiore Health System (03/11/2020 to 07/01/2023). Outcomes were new incidence of major adverse cardiovascular event (MACE), arrhythmias, inflammatory heart disease, thrombosis, cerebrovascular disorders, ischemic heart disease and other cardiac disorders between 30 days and (up to) 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!