Cell transplantation therapy is a promising strategy for spinal cord injury (SCI) repair. Despite advancements in the development of therapeutic strategies in acute and subacute SCI, much less is known about effective strategies for chronic SCI. In previous studies we demonstrated that transplants of neural progenitor cells (NPC) created a permissive environment for axon regeneration and formed a neuronal relay across the injury following an acute dorsal column injury. Here we explored the efficacy of such a strategy in a chronic injury. We tested two preparations of NPCs derived from rat spinal cord at embryonic day 13.5: one prepared using stocks of cultured cells and the other of dissociated cells transplanted without culturing. Transplantation was delayed for 4-, 6- and 12-weeks post injury for a chronic injury model. We found that the dissociated NPC transplants survived and proliferated for at least 5 weeks post transplantation, in contrast to the poor survival of transplants prepared from cultured NPC stocks. The dissociated NPC transplants differentiated into neurons expressing excitatory markers, promoted axon regeneration into the injury/transplant site and extended axons from graft-derived neurons into the host. These results support the potential of NPC transplants to form neuronal relays across a chronic SCI, but they also underscore the challenges of achieving efficient cell survival in the environment of a chronic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961783PMC
http://dx.doi.org/10.3390/biomedicines10020350DOI Listing

Publication Analysis

Top Keywords

chronic injury
12
npc transplants
12
neural progenitor
8
progenitor cells
8
dorsal column
8
spinal cord
8
chronic sci
8
axon regeneration
8
dissociated npc
8
injury
7

Similar Publications

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear.

View Article and Find Full Text PDF

Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved.

View Article and Find Full Text PDF

Background: Spinal cord tethering and syringomyelia after trauma are well-known pathologies in patients suffering from spinal cord injury (SCI). In symptomatic cases, various surgical options are available, but untethering and expansion duraplasty is the currently preferred treatment strategy. However, patient outcomes are usually limited by rather high rates of surgical revisions.

View Article and Find Full Text PDF

Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China. Electronic address:

A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis (RF). Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!