Vagal nerve stimulation (VNS) has a meaningful basis as a potentially effective treatment for heart failure with reduced ejection fraction. There is an ongoing VNS randomized study, and four studies are completed. However, relatively little is known about the effect of acetylcholine (ACh) on repolarization in human ventricular cardiomyocytes, as well as the effect of ACh on the rapid component of the delayed rectifier K current (I). Here, we investigated the effect of ACh on the action potential parameters in human ventricular preparations and on I in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). Using standard microelectrode technique, we demonstrated that ACh (5 µM) significantly increased the action potential duration in human left ventricular myocardial slices. ACh (5 µM) also prolonged repolarization in a human Purkinje fiber and a papillary muscle. Optical mapping revealed that ACh increased the action potential duration in human left ventricular myocardial slices and that the effect was dose-dependent. Perforated patch clamp experiments demonstrated action potential prolongation and a significant decrease in I by ACh (5 µM) in hiPSC-CMs. Computer simulations of the electrical activity of a human ventricular cardiomyocyte showed an increase in action potential duration upon implementation of the experimentally observed ACh-induced changes in the fully activated conductance and steady-state activation of I. Our findings support the hypothesis that ACh can influence the repolarization in human ventricular cardiomyocytes by at least changes in I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869322PMC
http://dx.doi.org/10.3390/biomedicines10020244DOI Listing

Publication Analysis

Top Keywords

human ventricular
20
action potential
20
ventricular cardiomyocytes
12
repolarization human
12
ach µm
12
potential duration
12
human
9
ach
8
increased action
8
duration human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!