Macrophages (M) are highly heterogenous and versatile innate immune cells involved in homeostatic and immune responses. Activated M can exist in two extreme phenotypes: pro-inflammatory (M1) M and anti-inflammatory (M2) M. These phenotypes can be recapitulated in vitro by using ligands of toll-like receptors (TLRs) and cytokines such as IFNγ and IL-4. In recent years, human induced pluripotent stem cells (iPSC)-derived M have gained major attention, as they are functionally similar to human monocyte-derived M and are receptive to genome editing. In this study, we polarised iPSC-derived M to M1 or M2 and analysed their proteome and secretome profiles using quantitative proteomics. These comprehensive proteomic data sets provide new insights into functions of polarised M.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869710 | PMC |
http://dx.doi.org/10.3390/biomedicines10020239 | DOI Listing |
World J Stem Cells
January 2025
Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.
View Article and Find Full Text PDFBrain
January 2025
Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, W1W 7FF, UK.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China.
Urinary proteomics is emerging as a potent tool for detecting sensitive and non-invasive biomarkers. At present, the comparability of urinary proteomics data across diverse liquid chromatography-mass spectrometry (LC-MS) platforms remains an area that requires investigation. In this study, we conduct a comprehensive evaluation of urinary proteome across multiple LC-MS platforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!