AI Article Synopsis

  • The study investigates how nanoparticles (NPs), heavy metals, and natural organic matter interact in water, focusing on the behaviors and environmental risks of CuO NPs with humic acid (HA) and cadmium (Cd).
  • The research finds that pH levels have a more significant impact on NP aggregation than the order in which components are added, while the contact sequence greatly influences NP solubility.
  • Pre-mixing CuO NPs with HA before adding Cd leads to higher solubility and lower aggregation of the NPs, and HA boosts the Cd-adsorption capacity of CuO NPs at higher pH levels.

Article Abstract

Nanoparticles (NPs), heavy metals and natural organic matter may co-exist in the water bodies. Currently, knowledge on their interaction effects on the behaviors and fates of NPs and heavy metal ions is rather limited, which is critical to comprehensively understand their environmental risk. In this study, the aggregation, solubility and Cd-adsorption of CuO NPs co-existing with humic acid (HA) and Cd upon different solution pH and contact sequences were determined. In the ternary systems of CuO NPs, HA and Cd, pH was more important than the contact sequence of the components in affecting the NP aggregation, while the contact sequence was a predominant factor in determining the NP solubility. Pre-equilibration of CuO NPs and HA before addition of Cd resulted in the highest solubility and lowest aggregation of the NPs, relative to other sequences of addition of the components. The adsorption capacity of CuO NPs for Cd-ions increased with an increasing pH value from 5 to 9. HA significantly enhanced the Cd-adsorption capacity of CuO NPs at pH 7 and 9, while at pH 5 a non-significant effect was observed. The results are helpful to better estimate the behaviors and fates of CuO NPs and Cd when they coexisting in natural waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114770DOI Listing

Publication Analysis

Top Keywords

cuo nps
24
capacity cuo
12
nps
9
aggregation solubility
8
natural organic
8
organic matter
8
nps heavy
8
behaviors fates
8
contact sequence
8
cuo
7

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Solution combustion synthesis of ZnO doped CuO nanocomposite for photocatalytic and sensor applications.

Sci Rep

January 2025

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

Introduction: Rheumatoid arthritis is an autoimmune disease that mainly causes joint damage. The patient experiences loss of appetite, pain, fever, and fatigue. The present study was designed to phytochemically characterize and evaluate the anti-arthritic activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using the hydroalcoholic extract of roots in an adjuvant-induced arthritic rat model.

View Article and Find Full Text PDF

One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!