Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a great challenge to the world's public health system. Nosocomial infections have occurred frequently in medical institutions worldwide during this pandemic. Thus, there is an urgent need to construct an effective surveillance and early warning system for pathogen exposure and infection to prevent nosocomial infections in negative-pressure wards. In this study, visualization and construction of an infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward were performed to describe the distribution regularity and infection risk of SARS-CoV-2, the critical factors of infection, the air changes per hour (ACHs) and the viral variation that affect infection risk. The SARS-CoV-2 distribution data from this model were verified by field test data from the Wuhan Huoshenshan Hospital ICU ward. ACHs have a great impact on the infection risk from airborne exposure, while they have little effect on the infection risk from surface exposure. The variant strains demonstrated significantly increased viral loads and risks of infection. The level of protection for nurses and surgeons should be increased when treating patients infected with variant strains, and new disinfection methods, electrostatic adsorption and other air purification methods should be used in all human environments. The results of this study may provide a theoretical reference and technical support for reducing the occurrence of nosocomial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858715PMC
http://dx.doi.org/10.1016/j.envint.2022.107153DOI Listing

Publication Analysis

Top Keywords

infection risk
24
nosocomial infections
12
risk assessment
8
assessment sars-cov-2
8
sars-cov-2 aerosol
8
aerosol surface
8
surface transmission
8
transmission negative-pressure
8
negative-pressure ward
8
infection
8

Similar Publications

Study Objective: Complex pharmacotherapy in cancer patients increases the likelihood of drug-drug interactions (DDIs). Pharmacists play a critical role in the identification and management of DDIs. The aim of present study was to evaluate the role of pharmacist in identifying antifungal drug interactions in cancer patients and providing relevant recommendations.

View Article and Find Full Text PDF

Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing.

View Article and Find Full Text PDF

Objective: To compare the sociodemographic and clinical profiles of patients with advanced cancer admitted to a tertiary palliative care unit before and during the COVID-19 pandemic.

Methods: This is an analysis of data from patients receiving care before (10/21/2019 to 03/16/2020) and during (09/23/2020 to 08/26/2021) the COVID-19 pandemic. Sociodemographic and clinical data were evaluated.

View Article and Find Full Text PDF

Background: COVID-19 caused a huge backlog of patients in glaucoma clinics. This study describes redesign of an entire glaucoma service with electronic patient triage to three levels and utilisation of the Scottish optometry infrastructure of upskilled optometrists.

Methods: 2276 patients in glaucoma clinics were identified and triaged to three levels in keeping with Glauc-strat-fast guidance with local amendments.

View Article and Find Full Text PDF

Early investigation revealed a reduced risk of SARS-CoV-2 infection among social contacts of COVID-19 vaccinated individuals, referred to as indirect protection. However, indirect protection from SARS-CoV-2 infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both vaccine-derived and infection-acquired immunity independently yield indirect protection to close social contacts with key differences in their strength and waning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!