Effects of carnosic acid on arsenic-induced liver injury in mice: A comparative transcriptomics analysis.

J Trace Elem Med Biol

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China. Electronic address:

Published: May 2022

Background: Long-term chronic exposure to arsenic can cause different degrees of liver injury. Till date, its molecular mechanism has not meant fully elucidated. Evidence indicates that Carnosic acid (CA) has a protective role in arsenic-induced liver injury. This study aimed to reveal the potential targets and evaluate the potential effect of CA intervention at transcriptional level, and provide reference for the intervention of arsenic-induced liver injury.

Methods: Arsenic-induced liver injury and CA intervention models were established in C57BL/6 mice. RNA sequencing technique was carried out to obtain the differentially expressed gene (DEG) profiles. The common covariant DEGs between arsenic induction and CA intervention was screened by comparative transcriptomic analysis methods. QRT-PCR was used to verify the covariant DEGs.

Results: Transcriptome results showed that 220 DEGs were identified after arsenic induction. 267 DEGs were identified after CA intervention (|fold change| > 2.0 and adjusted P < 0.05). 42 covariant DEGs were discovered between the comparison of "AS vs Control" and "AS & CA vs AS". In addition, hub gene analysis revealed a total of 8 covariant DEGs (Ehhadh, Fgf21, Cyp2b10, Plin2, Aacs, Cyp7a1, Per2 and Mylip). The mRNA expressions of Fgf21 and Plin2 were significantly increased (P < 0.05) and the mRNA expressions of Cyp2b10, Cyp7a1, Per2 and Mylip were significantly decreased (P < 0.05) after arsenic induction. On the contrary, the changes of these DEGs were reversed after CA intervention.

Conclusion: The present study would be helpful to understand the potential health effects of arsenic-induced liver injury and identify new potential targets, and provide a reference for the intervention of CA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2022.126953DOI Listing

Publication Analysis

Top Keywords

arsenic-induced liver
16
liver injury
16
carnosic acid
8
arsenic induction
8
degs identified
8
liver
5
intervention
5
effects carnosic
4
arsenic-induced
4
acid arsenic-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!