Cardiovascular (CV) disease represents the most common cause of death in developed countries. Risk assessment is highly relevant to intervene at individual level and implement prevention strategies. Circulating extracellular vesicles (EVs) are involved in the development and progression of CV diseases and are considered promising biomarkers. We aimed at identifying an EV signature to improve the stratification of patients according to CV risk and likelihood to develop fatal CV events. EVs were characterized by nanoparticle tracking analysis and flow cytometry for a standardized panel of 37 surface antigens in a cross-sectional multicenter cohort (n = 486). CV profile was defined by presence of different indicators (age, sex, body mass index, hypertension, hyperlipidemia, diabetes, coronary artery disease, cardiac heart failure, chronic kidney disease, smoking habit, organ damage) and according to the 10-year risk of fatal CV events estimated using SCORE charts of European Society of Cardiology. By combining expression levels of EV antigens using unsupervised learning, patients were classified into 3 clusters: Cluster-I (n = 288), Cluster-II (n = 83), Cluster-III (n = 30). A separate analysis was conducted on patients displaying acute CV events (n = 82). Prevalence of hypertension, diabetes, chronic heart failure, and organ damage (defined as left ventricular hypertrophy and/or microalbuminuria) increased progressively from Cluster-I to Cluster-III. Several EV antigens, including markers for platelets (CD41b-CD42a-CD62P), leukocytes (CD1c-CD2-CD3-CD4-CD8-CD14-CD19-CD20-CD25-CD40-CD45-CD69-CD86), and endothelium (CD31-CD105) were independently associated with CV risk indicators and correlated to age, blood pressure, glucometabolic profile, renal function, and SCORE risk. EV profiling, obtained from minimally invasive blood sampling, allows accurate patient stratification according to CV risk profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2022.02.005 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany.
Background: Artificial intelligence (AI) has already revolutionized the analysis of image, text, and tabular data, bringing significant advances across many medical sectors. Now, by combining with wearable inertial measurement units (IMUs), AI could transform health care again by opening new opportunities in patient care and medical research.
Objective: This systematic review aims to evaluate the integration of AI models with wearable IMUs in health care, identifying current applications, challenges, and future opportunities.
Brief Bioinform
November 2024
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Engineering, Ulster University, York Street, Belfast, Northern Ireland, BT15 1AP, UK.
Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Great Ormond Street Institute of Child Health, University College London, London, UK.
Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).
Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!