AI Article Synopsis

  • Photothermal therapy (PTT) is effective for treating primary tumors but struggles with photothermal resistance and metastasis.
  • Researchers suggest supplementing PTT with histone deacetylase inhibitors (HDACis) to enhance anti-tumor effects and promote cell death.
  • A new nano-complex combining vorinostat and black phosphorus quantum dots shows promise in improving PTT outcomes by targeting tumor growth and reversing thermotolerance and metastasis.

Article Abstract

Photothermal therapy (PTT) is becoming increasing prevalent in clinic for eradicating the primary tumor and improving cancer patients' compliance. However, photothermal resistance and distal metastasis still haunt the tumor treatment with PTT. Herein, on the basis that histone deacetylase acetylase inhibitor (HDACis) could activate the expression of anti-tumor gene and accelerate the differentiation and apoptosis of tumor cells, we propose that HDACis supplementing PTT could overcome those obstacles with appropriate drug-controlled release strategy. Thus, we fabricated a nano-complex of lysosomal activable vorinostat (SAHA) carrier-prodrug encapsulating black phosphorus quantum dots (BPQDs@PPS) to counter those challenges in PTT. With spherical morphology and favorable bio-safety, BPQDs@PPS could release BPQDs and Vorinostat spontaneously in lysosome, not only effectively inhibiting tumor growth, but also reversing tumor thermotolerance and metastasis within a PTT procedure. Especially, both western blot and immunofluorescence analysis validate that Vorinostat enables PTT to reverse tumor thermotolerance and distal metastasis by down-regulation of HSP70 and up-regulation of H3. Therefore, this research not only reveals the mechanism how HDACis supplement PTT in reversing tumor thermotolerance and metastasis, but also provides a promising prospect to upgrade clinical photothermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.121580DOI Listing

Publication Analysis

Top Keywords

tumor thermotolerance
16
thermotolerance metastasis
12
lysosomal activable
8
activable vorinostat
8
tumor
8
reverse tumor
8
photothermal therapy
8
distal metastasis
8
reversing tumor
8
ptt
7

Similar Publications

De novo strategy of organic semiconducting polymer brushes for NIR-II light-triggered carbon monoxide release to boost deep-tissue cancer phototheranostics.

J Nanobiotechnology

November 2024

Department of Interventional Radiology, Department of Nuclear Medicine, Fuzhou University Affiliated Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China.

The integration of photoacoustic imaging (PAI) and photothermal therapy (PTT) within the second near-infrared (NIR-II) window, offering a combination of high-resolution imaging and precise non-invasive thermal ablation, presents an attractive opportunity for cancer treatment. Despite the significant promise, the development of this noninvasive phototheranostic nanomedicines encounters challenges that stem from tumor thermotolerance and limited therapeutic efficacy. In this contribution, we designed an amphiphilic semiconducting polymer brush (SPB) featuring a thermosensitive carbon monoxide (CO) donor (TDF-CO) for NIR-II PAI-assisted gas-augmented deep-tissue tumor PTT.

View Article and Find Full Text PDF

Simultaneous inhibition of heat shock proteins and autophagy enhances radiofrequency ablation of hepatocellular carcinoma.

Biomater Sci

November 2024

Department of General Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China.

Radiofrequency ablation (RFA) is a commonly used minimally invasive treatment for hepatocellular carcinoma (HCC). However, incomplete radiofrequency ablation (iRFA) promotes tumor progression and metastasis. There is an urgent need to develop innovative strategies to enhance the efficacy of iRFA.

View Article and Find Full Text PDF

Facile Synthesis of Fe-Based Metal-Quinone Networks for Mutually Enhanced Mild Photothermal Therapy and Ferroptosis.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity.

View Article and Find Full Text PDF

In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels.

View Article and Find Full Text PDF

Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!