Aims: The adenosine-to-inosine (A-to-I) RNA editing controlled by the editing genes are known to diversify transcripts in human. Aberrant A-to-I editing due to dysregulation of the editing genes are involved in cancer development. However, it is still largely unclear how single nucleotide polymorphisms (SNPs) in the A-to-I editing genes confer to recurrence and/or drug resistance of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy in non-small-cell lung cancer (NSCLC).

Materials And Methods: In this study, we systematically evaluated and validated the role of twenty-eight potential functional genetic variants in four A-to-I editing genes (ADAR, ADARB1, ADARB2 and AIMP2) in prognosis of NSCLC patients receiving EGFR-TKIs.

Key Findings: We identified the ADAR rs1127309, rs1127317, and rs2229857 SNPs markedly contributing to prognosis of patients treated with EGFR-TKIs. Interestingly, SNP rs1127317 locating in the ADAR 3'-untranslated region regulates gene expression in an allele-specific manner via modulating binding of miR-454-5p in cells. In support of this, patients with the rs1127317 C allele correlated with elevated ADAR expression in tumors showed profoundly shorten survival after EGFR-TKIs therapy compared to the A allele carriers. Silencing of ADAR notably enhanced gefitinib sensitivities of NSCLC cells.

Significance: Our findings highlight the importance of the A-to-I RNA editing in drug resistance and nominate ADAR as a potential therapeutic target for unresectable NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.120408DOI Listing

Publication Analysis

Top Keywords

editing genes
16
rna editing
12
a-to-i editing
12
a-to-i rna
8
drug resistance
8
egfr-tkis therapy
8
adar
7
editing
7
a-to-i
5
editing enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!