Zearalenone Induces Apoptosis and Autophagy in a Spermatogonia Cell Line.

Toxins (Basel)

Department of Animal Biotechnology, Sangji University, 83, Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea.

Published: February 2022

Zearalenone (ZEN), a widely known mycotoxin, is mainly produced by various species, and it is a potent estrogenic metabolite that affects reproductive health in livestock and humans. In this study, the molecular mechanisms of toxicity and cell damage induced by ZEN in GC-1 spermatogonia (spg) cells were evaluated. Our results showed that cell viability decreased and apoptosis increased in a dose-dependent manner when GC-1 spg cells were exposed to ZEN. In addition, the key proteins involved in apoptosis, cleaved caspase-3 and -8, BAD, BAX, and phosphorylation of p53 and ERK1/2, were significantly increased in ZEN-exposed GC-1 spg cells for 24 h, and cytochrome c was released from mitochondria by ZEN. Interestingly, ZEN also triggered autophagy in GC-1 spg cells. The expression levels of the autophagy-related genes Atg5, Atg3, Beclin 1, LC3, Ulk1, Bnip 3, and p62 were significantly higher in ZEN-treated GC-1 spg cells, and the protein levels of both LC3A/B and Atg12 were remarkably increased in a dose-dependent manner in ZEN-exposed GC-1 spg cells compared to the control. In addition, immunostaining results showed that ZEN-treated groups showed a remarkable increase in LC 3A/B positive puncta as compared to the control in a dose-dependent manner based on confocal microscopy analysis in GC-1 spg cells. Our findings suggest that ZEN has toxic effects on tGC-1 spg cells and induces both apoptosis and autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878478PMC
http://dx.doi.org/10.3390/toxins14020148DOI Listing

Publication Analysis

Top Keywords

spg cells
32
gc-1 spg
24
dose-dependent manner
12
induces apoptosis
8
apoptosis autophagy
8
spg
8
cells
8
increased dose-dependent
8
zen-exposed gc-1
8
compared control
8

Similar Publications

Undifferentiated spermatogonia (Undiff-SPG) plays a critical role in maintaining continual spermatogenesis. However, the toxic effects and molecular mechanisms of maternal exposure to nanoplastics on offspring Undiff-SPG remain elusive. Here, we utilized a multiomics combined cytomorphological approach to explore the reproductive toxicity and mechanisms of polystyrene nanoplastics (PS-NPs) on offspring Undiff-SPG in mice after maternal exposure.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

Polyethylene glycol (PEG)-coated microsized artificial oxygen carriers (AOCs) with a perfluorooctyl bromide (PFOB) core and poly(lactide--caprolactone) (PLC) shell were successfully fabricated using Shirasu porous glass (SPG) membrane emulsification. The PEG coating was achieved by adding the polylactide--polyethylene glycol--polylactide (PLA-PEG-PLA) block copolymer to the disperse phase during the SPG membrane emulsification process. During the DCM evaporation process, the three-layer structure of the PEG layer, PLC shell, and PFOB core of the AOCs spontaneously formed by phase separation.

View Article and Find Full Text PDF

Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!