Deoxynivalenol (DON) is a toxic secondary metabolite produced by fungi that contaminates many crops, mainly wheat, maize, and barley. It affects animal health, causing intestinal barrier impairment and immunostimulatory effect in low doses and emesis, reduction in feed conversion rate, and immunosuppression in high doses. As it is very hard to completely avoid DON's production in the field, mitigatory methods have been developed. Biodegradation has become a promising method as new microorganisms are studied and new enzymatic routes are described. Understanding the common root of bacteria with DON degradation capability and the relationship with their place of isolation may bring insights for more effective ways to find DON-degrading microorganisms. The purpose of this review is to bring an overview of the occurrence, regulation, metabolism, and toxicology of DON as addressed in recent publications focusing on animal production, as well as to explore the enzymatic routes described for DON's degradation by microorganisms and the phylogenetic relationship among them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876347 | PMC |
http://dx.doi.org/10.3390/toxins14020090 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
DWI at RWTH Aachen, Macromolecular Chemistry, Pauwelsstrasse 8, 52056, Aachen, GERMANY.
The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.
View Article and Find Full Text PDFChemistry
January 2025
Griffith University - Gold Coast Campus, Institute for Biomedicine and Glycomics, Parklands Drive, 4222, Southport, AUSTRALIA.
3-Fluoroneuraminosyl fluorides are invaluable probes for studying the catalytic mechanism of sialidases (neuraminidases), and as sialidase inhibitors. Significantly, when a C-3 equatorial fluorine is installed on a C-4 functionalised N-acylneuraminic acid (Neu)-based template, the compounds are potent and selective inhibitors of both influenza and parainfluenza sialidases, and of virus replication. Typically, the reported syntheses of 3-fluoroneuraminosyl fluorides involve either an enzymatic or a chemical synthesis that have uncontrolled stereoselectivity in the introduction of fluorine at C-3 of Neu and consequently yield a mixture of C-3 ax and C-3 eq fluoro derivatives.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers.
View Article and Find Full Text PDFChemSusChem
January 2025
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales, Instituto de Química, Calle 70 No 52-21, Medellín, NA, Medellín, COLOMBIA.
In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!