AI Article Synopsis

  • Understanding the significance of noncovalent interactions has led to a focus on identifying and analyzing stationary points (SP) in weakly bound oligomers for computational chemistry.
  • A new algorithm called oligoCGO allows for efficient geometry optimization and vibrational analysis of oligomers, which can vary in structure and complexity.
  • The implementation of two residual gradient correction (RGC) schemes addresses issues caused by nonzero forces during vibration analysis, significantly improving accuracy and yielding results consistent with unconstrained stationary points.

Article Abstract

Following the full realization of the importance of noncovalent interactions, finding and characterizing stationary points (SP), of various order, for weakly bound oligomers have become important tasks for computational chemists. An efficient algorithm and an associated computer code, called oligoCGO, are described, facilitating constrained geometry optimization of oligomers of arbitrary structure and complexity and normal-mode vibrational analysis at nonstationary geometries. To minimize the adverse effects of nonzero forces on harmonic vibrational analyses at constrained stationary points (cSP), two residual gradient correction (RGC) schemes are proposed. RGC, for which a rigorous justification is given, is based on ignoring the remaining forces in internal-coordinate space. RGC modifies the geometry of the cSP in a single Newton step and recalculates the Cartesian Hessian at this updated geometry. As demonstrated by 10 examples related to the water-water, water-methane, and methane-methane dimers as well as the methane trimer, without RGC the harmonic analysis of cSPs may result in even qualitatively incorrect results when compared to reference values obtained at the nearby unconstrained SPs (uSP). Both RGC protocols work exceedingly well, and the corrected harmonic wavenumbers of the cSPs are very close to their uSP counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c01148DOI Listing

Publication Analysis

Top Keywords

stationary points
12
normal-mode vibrational
8
vibrational analysis
8
weakly bound
8
bound oligomers
8
constrained stationary
8
rgc
5
analysis weakly
4
oligomers constrained
4
points arbitrary
4

Similar Publications

Full-Dimensional Neural Network Potential Energy Surface for the Photodissociation Dynamics of HNCS in the S band.

J Phys Chem A

January 2025

Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China.

The full-dimensional potential energy surface (PES) for the photodissociation of HNCS in the S(″) electronic state has been built up by the neural network method based on more than 48,000 points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple-ζ basis set. It was found that two minima, namely, and isomers of HNCS, and seven stationary points exist on the S PES for the three dissociation pathways: HNCS(S) → H + NCS/HNC + S(D)/HN(Δ) + CS(Σ). The dissociation energies of two lowest product channels H + NCS and HNC + S(D) calculated on the PES are in good agreement with experimental results, validating the high accuracy of the PES.

View Article and Find Full Text PDF

The dynamics of the convergence for the stationary state considering a Duffing-like equation are investigated. The driven potential for these dynamics is supplied by a damped forced oscillator that has a piecewise linear function. Fixed points and their basins of attraction were identified and measured.

View Article and Find Full Text PDF

Description of changes in chemical bonding along the pathways of chemical reactions by deformation of the molecular electrostatic potential.

J Mol Model

January 2025

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.

Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.

View Article and Find Full Text PDF

Fast ramp fraction loss SVM classifier with low computational complexity for pattern classification.

Neural Netw

December 2024

College of Life Science, Hunan Normal University, Changsha, PR China. Electronic address:

Article Synopsis
  • The support vector machine (SVM) is effective for pattern classification but faces computational challenges with large datasets, leading to the introduction of a new model called L-SVM which aims to enhance efficiency.
  • L-SVM utilizes a unique optimality theory to handle its complex mathematical structure, enabling the development of a new algorithm using the alternating direction method of multipliers (ADMM) for better performance with lower computational demands.
  • Numerical experiments demonstrate that the new algorithm outperforms nine existing solvers in terms of speed, accuracy, and robustness against outliers, completing classification tasks significantly faster—just 18.67 seconds compared to over 605 seconds for other methods.
View Article and Find Full Text PDF

We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!