AI Article Synopsis

  • Maltobionic acid (MBA) can be produced using recombinant Pseudomonas taetrolens, with optimized reaction parameters leading to a record production titer of 200 g/L, a yield of 95.6%, and a productivity of 18.18 g/L/h.
  • The study shows that using a whole-cell biocatalyst (WCB) can enhance MBA productivity by nearly 1.9-fold compared to previous fermentation methods, and the WCB can be reused multiple times without losing efficiency.
  • Although high-maltose corn syrup (HMCS) yields lower productivity (8.33 g/L/h), its low cost makes it a viable substrate for commercial MBA production, potentially making the process more economically viable.

Article Abstract

Maltobionic acid (MBA) can be applied to various fields such as food, cosmetics, and pharmaceutical industries. In this study, whole-cell biocatalysis for MBA production was performed using recombinant Pseudomonas taetrolens homologously expressing quinoprotein glucose dehydrogenase (GDH). Various reaction parameters such as temperature, cell density, and cell harvest time, were optimized for improving MBA production. Under the optimized reaction conditions using pure maltose as a substrate, the MBA production titer, yield, and productivity of whole-cell biocatalyst (WCB) were 200 g/L, 95.6%, and 18.18 g/L/h, respectively, which were the highest compared to those reported previously. Productivity, a key factor for industrial MBA production, obtained from whole-cell biocatalysis in this study, was enhanced by approximately 1.9-fold compared to that obtained in our previous work (9.52 g/L/h) using the fermentation method. Additionally, the WCB could be reused up to six times without a significant reduction in MBA productivity, indicating that the WCB is very robust. Although MBA productivity (8.33 g/L/h) obtained from high-maltose corn syrup (HMCS) as a substrate was 45.8% of that using pure maltose, HMCS can be a better substrate for commercial MBA production because its price is only 1.1% of that of pure maltose. The results of this study using a WCB to convert maltose into MBA may support the development of a potential industrial process for more economically effective MBA production in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-022-02708-wDOI Listing

Publication Analysis

Top Keywords

mba production
24
pure maltose
16
whole-cell biocatalysis
12
mba
10
pseudomonas taetrolens
8
maltobionic acid
8
high-maltose corn
8
corn syrup
8
mba productivity
8
production
7

Similar Publications

Theoretical modeling of hepatitis C acute infection in liver-humanized mice support pre-clinical assessment of candidate viruses for controlled-human-infection studies.

Sci Rep

December 2024

The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA.

Designing and carrying out a controlled human infection (CHI) model for hepatitis C virus (HCV) is critical for vaccine development. However, key considerations for a CHI model protocol include understanding of the earliest viral-host kinetic events during the acute phase and susceptibility of the viral isolate under consideration for use in the CHI model to antiviral treatment before any infections in human volunteers can take place. Humanized mouse models lack adaptive immune responses but provide a unique opportunity to obtain quantitative understanding of early HCV kinetics and develop mathematical models to further understand viral and innate immune response dynamics during acute HCV infection.

View Article and Find Full Text PDF

Obesity is increasingly taking an important stage as a cause of death worldwide, and interventions with a good cost-effectiveness ratio are needed. is one of these natural products with health benefits. Objective.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have achieved impressive efficiency, but their commercialization is limited by issues like chemical homogeneity within the perovskite films, leading to defects and phase segregation, which severely compromise the stability and performance of PSCs. This study presents a novel approach to overcoming these barriers by employing N,N-methylenebisacrylamide (MBA) as a multifunctional crosslinking agent within the perovskite structure. MBA enhances chemical uniformity both laterally and vertically, improves crystallinity, and boosts overall film stability by forming a robust crosslinked network that regulates nucleation and growth dynamics during the pre-seeding process.

View Article and Find Full Text PDF

Influence of agarose in semi-IPN hydrogels for sustained Polymyxin B release.

Colloids Surf B Biointerfaces

December 2024

Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile. Electronic address:

Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.

View Article and Find Full Text PDF

Study Question: What is the governmental fiscal impact of a new assisted reproduction subsidy scheme based on projected lifetime net taxes attributed to resulting live births in Taiwan?

Summary Answer: We estimate that the new fertility reimbursement scheme has generated favorable lifetime fiscal gains for the Taiwanese government, resulting in a return on investment (ROI) of NT$5.6 for every NT$1.0 spent based on those families receiving public subsidies for fertility care under the new scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!