Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1β. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1β was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041552 | PMC |
http://dx.doi.org/10.1093/toxsci/kfac025 | DOI Listing |
J Occup Health
January 2025
Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.
View Article and Find Full Text PDFEndocrinology
January 2025
Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC.
Maternal exposure to ozone during implantation results in reduced fetal weight gain in rats. Offspring from ozone-exposed dams demonstrate sexually dimorphic risks to high-fat diet feeding in adolescence. To better understand the adolescent hepatic metabolic landscape following fetal growth restriction, RNA sequencing was performed to characterize the effects of ozone-induced fetal growth restriction on male and female offspring.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. Electronic address:
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (O) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.
Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.
Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!