We investigate numerically the evolution of a particular type of non-diffracting pulsed plasmonic beam called Airy plasmon pulses. A suitable diffraction grating is obtained by optimizing a grating (e.g., [Phys. Rev. Lett.107, 116802 (2011)10.1103/PhysRevLett.107.116802]) for maximum generation bandwidth and efficiency to excite ultrashort Airy plasmon pulses. The optimization process is based on Airy and non-Airy plasmons contributions from the diffraction grating. The time-averaged Airy plasmon pulse generated from the grating shows a bent trajectory and quasi non-diffracting properties similar to CW excited Airy plasmons. A design-parameter-dependent geometrical model is developed to explain the spatio-temporal dynamics of the Airy plasmon pulses, which predicts the pulse broadening in Airy plasmon pulses due to non-Airy plasmons emerging from the grating. This model provides a parametric design control for the potential engineering of temporally focused 2D non-diffracting pulsed plasmonic beams.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.439764DOI Listing

Publication Analysis

Top Keywords

airy plasmon
24
plasmon pulses
20
airy
8
dynamics airy
8
non-diffracting pulsed
8
pulsed plasmonic
8
diffraction grating
8
non-airy plasmons
8
plasmon
6
pulses
5

Similar Publications

Electron Airy beams and electron vortex beams are commonly generated using phase masks that imprint a transverse modulation on the particle wave function. Plasmons sustained by nanostructured conductors facilitate substantial interactions with free electrons, enabling considerable transverse modulation of the electron wave function. Consequently, electron Airy and vortex beams can also be produced through interactions between electrons and structured plasmonic fields.

View Article and Find Full Text PDF

Plasmonic Metalens to Generate an Airy Beam.

Nanomaterials (Basel)

September 2023

CONAHCYT-Unidad Foránea Monterrey, Centro de Investigación Científica y de Educación Superior de Ensenada, Alianza Centro 504, PIIT, Apodaca 66629, Mexico.

Airy beams represent an important type of non-diffracting beams-they are the only non-diffracting wave in one dimension, and thus they can be produced with a cylindrical geometry that modifies a wavefront in one dimension. In this paper, we show the design of a cylindrical plasmonic metalens consisting of an array of nanoslits in a gold thin layer that modulates the phase of a Gaussian beam to generate an airy beam propagating in free space. Based on the numerical results, we show that it is possible to generate an airy beam by only matching the phase of wavefronts coming out from the array of gold nanoslits to the airy beam phase at plane z=0.

View Article and Find Full Text PDF

Optical Binding-Driven Micropatterning and Photosculpting with Silver Nanorods.

Small Methods

September 2023

Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, University of Granada, Campus Cartuja, 18071, Granada, Spain.

Controlling the nano- and micropatterning of metal structures is an important requirement for various technological applications in photonics and biosensing. This work presents a method for controllably creating silver micropatterns by laser-induced photosculpting. Photosculpting is driven by plasmonic interactions between pulsed laser radiation and silver nanorods (AgNRs) in aqueous suspension; this process leads to optical binding forces transporting the AgNRs in the surroundings, while electronic thermalization results in photooxidation, melting, and ripening of the AgNRs into well-defined 3D structures.

View Article and Find Full Text PDF

Simultaneous and independent modulation of the amplitude and phase of surface waves (SWs) is critical in photonics and plasmonics. Here, we propose a method for flexible complex-amplitude modulation of SWs based on a metasurface coupler. Benefiting from the full range complex-amplitude modulation ability of the meta-atoms over the transmitted field, the coupler can convert the incident wave into a driven surface wave (DSW) with an arbitrary combination of amplitude and initial phase.

View Article and Find Full Text PDF

Reflection fiber temperature sensors functionalized with plasmonic nanocomposite material using intensity-based modulation are demonstrated for the first time. Characteristic temperature optical response of the reflective fiber sensor is experimentally tested using Au-incorporated nanocomposite thin films deposited on the fiber tip, and theoretically validated using a thin-film-optic-based optical waveguide model. By optimizing the Au concentration in a dielectric matrix, Au nanoparticles (NP) exhibit a localized surface plasmon resonance (LSPR) absorption band in a visible wavelength that shows a temperature sensitivity ~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!