The major challenges in traditional color phase hologram generation are the time-consuming iterative procedure and aberration caused by different wavelengths in color holographic display. Based on the original non-iterative phase hologram generation method-optimized random phase (ORAP), combined with the physical limitations of color holographic display, this paper proposes a full-support optimized random phase (FS-ORAP) method for non-iterative color phase hologram generation. FS-ORAP breaks through the limitation of the original ORAP method in the fixed support constraint of the target amplitude in the spatial domain, the full support constraint can be used to generate phase holograms of target amplitudes with arbitrary support size, which fits well with the generation mode of the three-color channel of the color phase hologram. In addition, the color aberration of the reconstructed image is eliminated by scaling the size of the three-color component. At the same time, FS-ORAP is used for the non-iterative fast generation of three-color channel holograms, which can greatly improve the generation speed of color phase holograms and can be adapted to various color holographic display techniques. Experimental results verify the feasibility of our proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.441375DOI Listing

Publication Analysis

Top Keywords

phase hologram
20
hologram generation
16
color holographic
16
holographic display
16
color phase
16
color
9
non-iterative phase
8
phase
8
random phase
8
support constraint
8

Similar Publications

Broadband terahertz holography using isotropic VO metasurfaces.

Sci Rep

January 2025

School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.

Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.

View Article and Find Full Text PDF

Digital technologies, such as virtual and augmented reality (VR and AR) are mainly used in the preclinical and clinical phases in neurosurgery and orthopedics. In contrast, they are used less frequently in visceral surgery as the intraoperative deformation is challenging for the clinical use. The application of VR is used successfully particularly in education and training.

View Article and Find Full Text PDF

The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.

View Article and Find Full Text PDF

Generation of Multiple-Depth 3D Computer-Generated Holograms from 2D-Image-Datasets Trained CNN.

Adv Sci (Weinh)

December 2024

Department of Information Communication, Army Academy of Armored Forces, Beijing, 100072, China.

Generating computer-generated holograms (CGHs) for 3D scenes by learning-based methods can reconstruct arbitrary 3D scenes with higher quality and faster speed. However, the homogenization and difficulty of obtaining 3D high-resolution datasets seriously limit the generalization ability of the model. A novel approach is proposed to train 3D encoding models based on convolutional neural networks (CNNs) using 2D image datasets.

View Article and Find Full Text PDF
Article Synopsis
  • The review discusses a technique for visualizing demagnetization fields in NdFeB thin foils using electron holography, which is essential for understanding magnetic flux density.
  • The resulting maps from this method align well with micromagnetic simulations, shedding light on coercivity in these materials.
  • Additionally, it explores the use of a wavelet hidden Markov model for reducing noise in the phase images, improving the accuracy of magnetic characterization across various magnetic materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!