A digital lensless holographic microscope (DLHM) sensitive to the linear diattenuation produced by biological samples is reported. The insertion of a linear polarization-states generator and a linear polarization-states analyzer in a typical DLHM setup allows the proper linear diattenuation imaging of microscopic samples. The proposal has been validated for simulated and experimental biological samples containing calcium oxalate crystals extracted from agave leaves and potato starch grains. The performance of the proposed method is similar to that of a traditional polarimetric microscope to obtain linear diattenuation images of microscopic samples but with the advantages of DLHM, such as numerical refocusing, cost effectiveness, and the possibility of field-portable implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.440376 | DOI Listing |
Mueller matrix microscopy can provide comprehensive polarization-related optical and structural information of biomedical samples label-freely. Thus, it is regarded as an emerging powerful tool for pathological diagnosis. However, the staining dyes have different optical properties and staining mechanisms, which can put influence on Mueller matrix microscopic measurement.
View Article and Find Full Text PDFLasers Med Sci
May 2024
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Interaction of polarized light with healthy and abnormal regions of tissue reveals structural information associated with its pathological condition. Even a slight variation in structural alignment can induce a change in polarization property, which can play a crucial role in the early detection of abnormal tissue morphology. We propose a transmission-based Stokes-Mueller microscope for quantitative analysis of the microstructural properties of the tissue specimen.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
The inherent linear dichroism (LD), high absorption, and solution processability of organic semiconductors hold immense potential to revolutionize polarized light detection. However, the disordered molecular packing inherent to polycrystalline thin films obscures their intrinsic diattenuation, resulting in diminished polarization sensitivity. In this study, we develop filter-free organic polarization-sensitive phototransistors (PSPs) with both a high linear dichroic ratio (LDR) and exceptional photosensitivity utilizing molecularly thin dithieno[3,2-b:2',3'-d]thiophene derivatives (DTT-8) two-dimensional molecular crystals (2DMCs) as the active layer.
View Article and Find Full Text PDFJ Biomed Opt
May 2024
Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Mohanpur, India.
Significance: Quantitative optical polarimetry has received considerable recent attention owing to its potential for being an efficient diagnosis and characterizing tool with potential applications in biomedical research and various other disciplines. In this regard, it is crucial to validate various Mueller matrix (MM) decomposition methods, which are utilized to extract and quantify the intrinsic individual polarization anisotropy properties of various complex optical media.
Aim: To quantitatively compare the performance of both polar and differential MM decomposition methods for probing the structural and morphological changes in complex optical media through analyzing their intrinsic individual polarization parameters, which are extracted using the respective decomposition algorithms.
Sci Rep
January 2024
Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA.
This study delves into the polarization properties of various hair colors using several techniques, including polarization ray tracing, full Stokes, and Mueller matrix imaging. Our analysis involved studying hair in both indoor and outdoor settings under varying lighting conditions. Our results demonstrate a strong correlation between hair color and the degree of linear polarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!