Wave structure function, coherence length, and angle-of-arrival variance are derived analytically for a Gaussian beam propagating in an underwater turbulent medium. The recently introduced oceanic turbulence optical power spectrum model [J. Opt. Soc. Am. A37, 1614 (2020)JOAOD60740-323210.1364/JOSAA.399150] is used, and results are obtained for the case of large separations. The effect of temperature, salinity, rates of dissipation of mean-squared temperature and energy, temperature-salinity gradient ratio, wavelength, and aperture diameter, is presented. Further, a Gaussian beam is compared with the plane and spherical waves in terms of their effect on wave structure function, coherence length, and angle-of-arrival fluctuations. The presented results can be beneficial to set the parameters of imaging and communication systems using a Gaussian beam in an underwater turbulent medium and can be used for the optimization of the design of these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.444304DOI Listing

Publication Analysis

Top Keywords

gaussian beam
16
structure function
12
function coherence
12
coherence length
12
length angle-of-arrival
12
angle-of-arrival variance
8
wave structure
8
underwater turbulent
8
turbulent medium
8
gaussian
4

Similar Publications

Purpose: To evaluate the impact of patient setup errors on the dosimetry and radiobiological models of intensity-modulated radiotherapy (IMRT) for esophageal cancer.

Methods And Materials: This retrospective study with 56 patients in thermoplastic mask (TM) and vacuum bag (VB) groups utilized real setup-error (RSE) data from cone-beam CT scans to generate simulated setup-error (SSE) data following a normal distribution. The SSE data were applied to simulate all treatment fractions per patient by shifting the plan isocenter and recalculating the dose.

View Article and Find Full Text PDF

Background: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.

View Article and Find Full Text PDF

Introduction: Dental implants are the most popular alternative to rehabilitation of missing teeth and oro-facial structures. The outcome of such procedures depends on various factors and most-importantly on the osseo-integation with the surrounding bone. The evaluation needs better visualization and evaluation using CBCT anaylsis and determination of HU, using an appropriate software.

View Article and Find Full Text PDF

PTV Margins in MR-guided and Beam-gated SBRT of Liver Metastases: GTV Dose Escalation Can Reduce the Required PTV.

Clin Oncol (R Coll Radiol)

December 2024

Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.

Aims: Determining appropriate PTV margins for SBRT of liver metastases is a non-trivial task, especially with motion management included. The widely used analytical van Herk margin recipe (van Herk et al., 2000) could break down due to (i) a low number of fractions, (ii) non-Gaussian errors, or (iii) non-homogenous dose distributions.

View Article and Find Full Text PDF

We present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!