In digital holography (DH), information in the hologram is recorded and stored in digital format in discrete bits. Like its parent, holography, DH evolved over many years with periods of dormancy and revival. Almost abandoned, multiple times, unanticipated events or developments in separate industries revived it with explosive, quantum jumps, making it useful and popular to a wide audience. Although its history has been treated in many papers and books, the field is dynamic and constantly providing new opportunities. Having been born long before low-cost, fast, powerful digital computers and digital detectors were available, DH was confined to the academic world, where practical applications and commercial opportunities were few if any. Consumer demand that led to low-cost personal computers, high-resolution digital cameras, supporting software, and related products changed the situation drastically by providing every potential researcher affordable, powerful hardware and software needed to apply image processing algorithms and move DH to new practical application levels. In this paper, as part of the sixtieth anniversary of off-axis holography, we include a brief introduction to the fundamentals of DH and examine the history and evolution of DH during its periods of rise and fall. We summarize many new emerging techniques, applications, and potential future applications along with additional details for metrological examples from the authors' research.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.440610DOI Listing

Publication Analysis

Top Keywords

digital holography
8
digital
6
history metrology
4
applications
4
metrology applications
4
applications game-changing
4
game-changing technology
4
technology digital
4
holography
4
holography [invited]
4

Similar Publications

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

Background And Purpose: Quantitative MRI (qMRI) has been explored for detecting tumor changes during radiation therapy (RT) in head and neck squamous cell cancer (HNSCC). Clinical trials show prolonged survival with PD-1 targeted immune checkpoint inhibition. Hypofractionated radiation regimens are being studied to counteract radioresistant clonogen formation.

View Article and Find Full Text PDF

Traditional numerical reconstruction methods in digital holography (DH) are faced with problems such as inaccurate and time-consuming unwrapping or the need to capture multiple holograms with different diffraction distances. In recent years, deep learning, believed to be a new and effective optimization tool, has been widely used in digital holography. However, most supervised deep learning methods require large-scale paired data, and their preparation is time-consuming and laborious.

View Article and Find Full Text PDF

This paper introduces an interferometer for single-shot areal quantitative phase imaging at two wavelengths simultaneously, suitable for use with low coherence sources. It operates in reflection geometry with on-axis illumination, so that it can be conveniently applied to surface texture measurements. The system consists of two identical 4f systems forming the reference and sample arm.

View Article and Find Full Text PDF

Phase-shifting Fringe projection profilometry (FPP) excels in 3D measurements for many macro-scale applications, but as features-of-interest shrink to the microscopic scale, depth-of-field limitations slow measurements and necessitate mechanical adjustments. To address this, we introduce digital holography (DH) for fringe image capture, enabling numerical refocusing of defocused object regions. Our experiments validate this approach and compare depth measurement noise with other DH and FPP methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!