We report an experimental study of long-wave infrared difference frequency generation based on crystal. The sources of two input wavelengths were the fundamental output of a Nd:YAG laser and its second-harmonic pumped ∼1.2µ optical parametric oscillator. A wide tuning range of 7.9-17.5 µm (>1.14 octave) was achieved, which reached the upper limit of the transparency region. The spectra and pulse widths, input-output relationship, beam profile, wavelength tolerance, and angular acceptance of the phase-matching were characterized in detail. This presented coherent source can potentially be applied in multiple gas analyses and spectral imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.446136DOI Listing

Publication Analysis

Top Keywords

long-wave infrared
8
infrared difference
8
difference frequency
8
frequency generation
8
tunable long-wave
4
generation bagase
4
bagase crystal
4
crystal report
4
report experimental
4
experimental study
4

Similar Publications

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Pixel-Based Long-Wave Infrared Spectral Image Reconstruction Using a Hierarchical Spectral Transformer.

Sensors (Basel)

November 2024

Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.

Long-wave infrared (LWIR) spectral imaging plays a critical role in various applications such as gas monitoring, mineral exploration, and fire detection. Recent advancements in computational spectral imaging, powered by advanced algorithms, have enabled the acquisition of high-quality spectral images in real time, such as with the Uncooled Snapshot Infrared Spectrometer (USIRS). However, the USIRS system faces challenges, particularly a low spectral resolution and large amount of data noise, which can degrade the image quality.

View Article and Find Full Text PDF

Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature.

Sci Adv

December 2024

Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.

Article Synopsis
  • Detection of mid-infrared (MIR) light is vital for various technologies like night vision and thermal imaging, yet traditional methods often require complex setups or cooling.
  • This study introduces a novel approach using two-dimensional metal halide perovskites (2D-MHPs) that enables high-sensitivity detection of MIR light at room temperature, with capabilities down to 1 nanowatt per square micrometer.
  • The technology achieves further sensitivity improvements using unique membrane structures and photonic strategies, covering a range of infrared wavelengths from 2 to 10.6 micrometers, paving the way for advancements in areas like environmental monitoring and molecular sensing.
View Article and Find Full Text PDF

Radiative cooling in smart windows using VO - a dynamic thermal management material, is of potential interest for enhancing energy savings in buildings due to its both solar and emittance tuneability in response to changing temperatures. However, studies related to the effects of VO thin film microstructure in a multilayer system on emissivity regulation are currently lacking. The present study addresses the thermochromic and emissivity performance of VO/ZnSe/ITO/Glass Fabry-Perot (F-P) cavity thin film system, by manipulating the porosity in VO thin film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!